Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity Stereospecificity

DIASTEREOMERS STEREOSELECTIVITY STEREOSPECIFICITY STERIC-APPROACH CONTROL STERIC HINDRANCE Steric hindrance effect on ligand binding, SCATCHARD RLOT Stern layer,... [Pg.782]

Let us now define three terms that refer to reactions stereoselective, stereospecific and stereoelectronic. There has been a difference of opinion about the use of the first two we shall use the definitions suggested by Zimmerman2 and now adopted by most authors. [Pg.58]

Chiral allenyl boronic esters (159) add efficiently to both aldehydes and 8-hydroxyketones with high levels of stereoselectivity/ stereospecificity (Scheme 44). Both (+)- and (-)-tartrates may be used to provide the enantiocomplementary products. [Pg.478]

These reactions bring out important and interesting consequences of the HED classification in the context of facioselectivity and difacioselectivity. Other consequences relating to stereoselectivity, stereospecificity, rotativity, stereotopoprocesses, and chirotopoprocesses, will be given in Volume 3, Chapters 17 and 18. Figure 12.5 represents the 45 quartets that emerge from our analyses. [Pg.84]

Note that the stereochemistry comes out right. H s a and b are cis because they were cis in the starting quinone and the Diels-Alder reaction is stereospecific in this respect. H is also cis to and H " because the Diels-Alder reaction is stereoselectively endo. These points are described in more detail in Norman p.284-6 and explained in Ian Fleming Frontier Orbitals and Organic Chemical Reactions, Wiley 1976, p. 106-109. How would you make diene A ... [Pg.70]

The Pd-catalyzed hydrogenolysis of vinyloxiranes with formate affords homoallyl alcohols, rather than allylic alcohols regioselectively. The reaction is stereospecific and proceeds by inversion of the stereochemistry of the C—O bond[394,395]. The stereochemistry of the products is controlled by the geometry of the alkene group in vinyloxiranes. The stereoselective formation of stereoisomers of the syn hydroxy group in 630 and the ami in 632 from the ( )-epoxide 629 and the (Z)-epoxide 631 respectively is an example. [Pg.376]

A common misconception is that a stereospecific reaction is simply one that is 100% stereoselective The two terms are not synonymous however A stereospecific reac tion IS one which when carried out with stereoisomeric starting materials gives a prod uct from one reactant that is a stereoisomer of the product from the other A stereo selective reaction is one m which a single starting material gives a predominance of a... [Pg.309]

In describing the stereochemical features of chemical reactions, we can distinguish between two types stereospecific reactions and stereoselective reactions. A stereospecific reaction is one in which stereoisomeric starting materials aflFord stereoisomerically different products under the same reaction conditions. A stereoselective reaction is one in which a single reactant has the capacity of forming two or more stereoisomeric products in a particular reaction but one is formed preferentially. [Pg.97]

Some stereospecific reactions are listed in Scheme 2.9. Examples of stereoselective reactions are presented in Scheme 2.10. As can be seen in Scheme 2.9, the starting materials in these stereospecific processes are stereoisomeric pairs, and the products are stereoisomeric with respect to each other. Each reaction proceeds to give a single stereoisomer without contamination by the alternative stereoisomer. The stereochemical relationships between reactants and products are determined by the reaction mechanism. Detailed discussion of the mechanisms of these reactions will be deferred until later chapters, but some comments can be made here to illustrate the concept of stereospecificity. [Pg.98]

We have previously seen (Scheme 2.9, enby 6), that the dehydrohalogenation of alkyl halides is a stereospecific reaction involving an anti orientation of the proton and the halide leaving group in the transition state. The elimination reaction is also moderately stereoselective (Scheme 2.10, enby 1) in the sense that the more stable of the two alkene isomers is formed preferentially. Both isomers are formed by anti elimination processes, but these processes involve stereochemically distinct hydrogens. Base-catalyzed elimination of 2-iodobutane affords three times as much -2-butene as Z-2-butene. [Pg.100]

In the bromination of styrene, a po-+ plot is noticeably curved. If the extremes of the curves are taken to represent straight lines, the curve can be resolved into two Hammett relationships with p = —2.8 for electron-attracting substituents and p = —4.4 for electron-releasing substituents. When the corresponding -methylstyrenes are examined, a similarly curved ap plot is obtained. Furthermore, the stereospecificity of the reaction in the case of the -methylstyrenes varies with the aryl substituents. The reaction is a stereoespecific anti addition for strongly electron-attracting substituents but becomes only weakly stereoselective for electron-releasing substituents, e.g., 63% anti, 37% syn, forp-methoxy. Discuss the possible mechanistic basis for the Hammett plot curvature and its relationship to the stereochemical results. [Pg.403]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

In a further extension of this reaction Winstein and Dauben showed that the action of the methylene-transfer reagent (1) on A -cycloal-kenols, e.g., (2), proceeds by stereospecific cis addition to give the cw-cyclo-propyl carbinol (5). It was also observed that both the rate and yield of the hydroxyl-assisted reaction are increased substantially. It has been suggested that the high stereoselectivity observed in these instances is best explained by complex formation or reaction of the reagent (1) with the hydroxyl group of (2) followed by intromolecular transfer of methylene. [Pg.108]

Halogen atoms can be stereoselectively introduced by ring-opening of y-azir-idinyl-a,P-enoates (Scheme 2.39). Treatment of 149 with diethylaminosulfur tri-fluoride (DAST) results in stereospecific ring-opening to yield fluorinated derivative 150 [59]. A related stereoselective conversion of y-aziridinyl-a,P-enoates 151 into allyl halides 152 by use of lithium halide in the presence of Amberlyst 15 was also reported recently [60]. [Pg.55]

L-Amino adds could be produced from D,L-aminonitriles with 50% conversion using Pseudomonas putida and Brembacterium sp respectively, the remainder being the corresponding D-amino add amide. However, this does not prove the presence of a stereoselective nitrilase. It is more likely that the nitrile hydratase converts the D,L-nitrile into the D,L-amino add amide, where upon a L-spedfic amidase converts the amide further into 50% L-amino add and 50% D-amino add amide. In this respect the method has no real advantage over the process of using a stereospecific L-aminopeptidase (vide supra). [Pg.280]

Due to mechanistic requirements, most of these enzymes are quite specific for the nucleophilic component, which most often is dihydroxyacetone phosphate (DHAP, 3-hydroxy-2-ox-opropyl phosphate) or pyruvate (2-oxopropanoate), while they allow a reasonable variation of the electrophile, which usually is an aldehyde. Activation of the donor substrate by stereospecific deprotonation is either achieved via imine/enamine formation (type 1 aldolases) or via transition metal ion induced enolization (type 2 aldolases mostly Zn2 )2. The approach of the aldol acceptor occurs stereospecifically following an overall retention mechanism, while facial differentiation of the aldehyde is responsible for the relative stereoselectivity. [Pg.586]


See other pages where Stereoselectivity Stereospecificity is mentioned: [Pg.1294]    [Pg.184]    [Pg.427]    [Pg.53]    [Pg.1294]    [Pg.184]    [Pg.427]    [Pg.53]    [Pg.278]    [Pg.213]    [Pg.402]    [Pg.310]    [Pg.60]    [Pg.157]    [Pg.74]    [Pg.102]    [Pg.772]    [Pg.47]    [Pg.301]    [Pg.310]    [Pg.92]    [Pg.88]    [Pg.210]    [Pg.211]    [Pg.248]    [Pg.249]    [Pg.118]    [Pg.171]    [Pg.202]    [Pg.299]    [Pg.303]    [Pg.531]    [Pg.542]    [Pg.585]    [Pg.663]    [Pg.52]   


SEARCH



Reaction Stereochemistry Stereoselectivity and Stereospecificity

Regioselective, Stereoselective, and Stereospecific Reactions

Stereoselective and Stereospecific Reactions

Stereoselective and stereospecific

Stereoselective synthesis Stereospecific addition

Stereoselectivity Stereospecific intramolecular

Stereoselectivity Stereospecific synthesis

Stereoselectivity Stereospecific, definition

Stereospecific polymerizations stereoselectivity mechanism

The use of stereoselective reactions to produce stereospecific centres

© 2024 chempedia.info