Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselective reduction of

A noteworthy development is the use of KH for complexing alkylboranes and alkoxyboranes to form various boron hydrides used as reducing agents in the pharmaceutical industry. Potassium tri-j -butylborohydride [54575-50-7] KB(CH(CH2)C2H )2H, and potassium trisiamylborohydride [67966-25-0] KB(CH(CH2)CH(CH2)2)3H, are usefiil for the stereoselective reduction of ketones (66) and for the conjugate reduction and alkylation of a,P-unsaturated ketones (67). [Pg.519]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

A McMurry coupling of (176, X = O Y = /5H) provides ( )-9,ll-dehydroesterone methyl ether [1670-49-1] (177) in 56% yield. 9,11-Dehydroestrone methyl ether (177) can be converted to estrone methyl ether by stereoselective reduction of the C —double bond with triethyi silane in triduoroacetic acid. In turn, estrone methyl ether can be converted to estradiol methyl ether by sodium borohydride reduction of the C17 ketone (199,200). [Pg.436]

R)-Pantolactone (9) is prepared ia either of two ways by resolution of the (R,5)-pantolactone mixture (18), or by stereoselective reduction of ketopantolactone (19) by chemical or microbial methods (19). [Pg.58]

Stereoselective reduction of ketones to alcohols by means of boiohydncle reagents (U S-BU3BH or t-BuCIBR (or lormation ol chiral alcohols)... [Pg.50]

The enantiosclective synthesis of (-)-bilobalide was achieved based on successful synthesis of the chiral enone A and the highly stereoselective reduction of enone A to the desired a-alcohol B. Further transformation to (-)-bilobalide was accomplished following the route used for racemic bilobalide (Ref. 2). [Pg.229]

The properties of chlorine azide resemble those of bromine azide. Pon-sold has taken advantage of the stronger carbon-chlorine bond, i.e., the resistance to elimination, in the chloro azide adducts and thus synthesized several steroidal aziridines. 5a-Chloro-6 -azidocholestan-3 -ol (101) can be converted into 5, 6 -iminocholestan-3l -ol (102) in almost quantitative yield with lithium aluminum hydride. It is noteworthy that this aziridine cannot be synthesized by the more general mesyloxyazide route. Addition of chlorine azide to testosterone followed by acetylation gives both a cis- and a trans-2iddMct from which 4/S-chloro-17/S-hydroxy-5a-azidoandrostan-3-one acetate (104) is obtained by fractional crystallization. In this case, sodium borohydride is used for the stereoselective reduction of the 3-ketone... [Pg.25]

Stereoselective reduction of vmyhc fluonne is also accomplished with tri-butylphosphine [/S] (equation 12)... [Pg.299]

In another approach to the meso problem , utilization of a chiral auxiliary attached at nitrogen appears to induce very high stereoselectivity. Reduction of the optically active imide 10a (see Appendix) with tetramethylammonium triacetoxyborohydridc in acetone/ acetic acid at 25 "C gives a 4 96 mixture of the diastcreomers 11a and 12a in 87% yield44. On changing the solvent to acetonitrile/acetic acid the diastereomeric ratio is improved to < 1 99, but the yield is lower (63%). [Pg.811]

Given the above possible reaction mechanism, it is then intriguing to speculate that another approach to the same stereoselective reduction of a vinyl sulphone could be achieved by the use of a suitably sterically hindered organosilane, as outlined in equation (64). Such a reaction would provide an interesting test for the stereoelectronics of a conjugate addition reaction by a second-row heteroatom to a vinyl sulphone. [Pg.952]

Fig. 3. Proposed mechanism for stereoselective reduction of phosphine oxides... Fig. 3. Proposed mechanism for stereoselective reduction of phosphine oxides...
Based on information accrued during the stereochemical elucidation, macrolactone 85 was identified as a viable synthetic intermediate (Scheme 12). The authors were cognizant of the potential challenges that could arise. First, the required formation of a trisubstituted alkene in a projected Horner-Emmons macrocyclization was without strong precedent. Also, this strategy would necessitate a stereoselective reduction of the Cl5 ketone, which was predicted to be feasible based on MM2 calculations. [Pg.66]

Chemo- and stereoselective reduction of (56) to (55) is achieved In highest yield by sodium borohydride in ethanol. The isolated ketone is reduced more rapidly than the enone and (55) is the equatorial alcohol. Protection moves the double bond out of conjugation and even the distant OH group in (54) successfully controls the stereochemistry of the Simmons-Smith reaction. No cyclopropanation occurred unless the OH group was there. Synthesis ... [Pg.371]

Preparative-scale fermentation of papaveraldine, the known benzyliso-quinoline alkaloid, with Mucor ramannianus 1839 (sih) has resulted in a stereoselective reduction of the ketone group and the isolation of S-papaverinol and S-papaverinol M-oxide [56]. The structure elucidations of both metabolites were reported to be based primarily on ID and 2D NMR analyses and chemical transformations [56]. The absolute configuration of S-papaverinol has been determined using Horeau s method of asymmetric esterification [56]. The structures of the compounds are shown in Fig. 7. [Pg.116]

The enantioselective synthesis in Scheme 13.22 is based on stereoselective reduction of an a, (3-unsaturated aldehyde generated from (—)-(.V)-limonene (Step A). The reduction was done by Baker s yeast and was completely enantioselective. The diastereoselectivity was not complete, generating an 80 20 mixture, but the diastere-omeric alcohols were purified at this stage. After oxidation to the aldehyde, the remainder of the side chain was introduced by a Grignard addition. The ester function... [Pg.1185]

Amino alcohols like (iS )-prolinol react with nitroalkenes very rapidly with very high facia] selectivity.31 Rapid and stereoselective reduction of the nitro function is essential for the conversion of the products to 1,2-diamine derivatives with the retention of the configuration. Samarium diiodide is recommended in the stereoselective reduction of thermally unstable 2-aminonitroalkanes to give a range of useful 1,2-diamines (Eq. 4.26).32... [Pg.77]

Martinez Lagos, F., Carballeira, J.D., Bermudez, J.L. et al. (2004) Highly stereoselective reduction of haloketones using three new yeasts application to the synthesis of (S)-adrenergic beta-blockers related to propranolol. Tetrahedron Asymmetry, 15 (5), 763-770. [Pg.161]

Carballeira, J.D., Alvarez, E., Campillo,M,etal. (2004)DiplogelasinosporagrovesiilNll 171018, anew whole cell biocatalyst for the stereoselective reduction of ketones. Tetrahedron Asymmetry, 15 (6), 951-962. [Pg.161]

Edegger, K., Stampfer, W., Seisser, B. et al. (2006) Regio- and stereoselective reduction of diketones and oxidation of diols by biocatalytic hydrogen transfer. European Journal of Organic Chemistry, (8), 1904—1909. [Pg.162]

Yasohara, Y., Kizaki, N., Hasegawa, J. et al. (2001) Stereoselective reduction of alkyl 3-oxobutanoates by carbonyl reductase from Candida magnoliae. Tetrahedron Asymmetry, 12 (12), 1713-1718. [Pg.162]

Engelking, H., Pfaller, R., Wich, G. and Weuster-Botz, D. (2004) Stereoselective reduction of ethyl 4-chloro acetoacetate with recombinant Pichia pastoris. Tetrahedron Asymmetry, 15 (22), 3591-3593. [Pg.162]

Wada, M., Kataoka, M., Kawabata, H. et al. (1998) Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Bioscience Biotechnology and Biochemistry, 62 (2), 280-285. [Pg.163]


See other pages where Stereoselective reduction of is mentioned: [Pg.965]    [Pg.69]    [Pg.431]    [Pg.439]    [Pg.528]    [Pg.558]    [Pg.279]    [Pg.950]    [Pg.252]    [Pg.59]    [Pg.10]    [Pg.10]    [Pg.950]    [Pg.21]    [Pg.200]    [Pg.20]    [Pg.146]    [Pg.152]    [Pg.153]    [Pg.58]    [Pg.59]    [Pg.466]    [Pg.38]    [Pg.44]    [Pg.51]    [Pg.76]   


SEARCH



Reduction stereoselective

Reduction stereoselectivity

© 2024 chempedia.info