Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereogenic centers ketones

In accord with the Felkin-Anh model, a-chiral ketones react more diastereoselectively than the corresponding aldehydes. Increasing steric demand of the acyl substituent increases the Cram selectivity. Due to the size of the acyl substituent, the incoming nucleophile is pushed towards the stereogenic center and therefore the diastereoface selection becomes more effective (see also Section 1.3.1.1.). Thus, addition of methyllithium to 4-methyl-4-phenyl-3-hexanonc (15) proceeds with higher diastercoselectivity than the addition of ethyllithium to 3-methyl-3-phenyl-2-pen-tanone (14)32. [Pg.31]

In a chiral aldehyde or a chiral ketone, the carbonyl faces are diastereotopic. Thus, the addition of an enolate leads to the formation of at least one stereogenic center. An effective transfer of chirality from the stereogenic center to the diastereoface is highly desirable. In most cases of diastereoface selection of this type, the chiral aldehyde or ketone was used in the racemic form, especially in early investigations. However, from the point of view of an HPC synthesis, it is indispensable to use enantiomerically pure carbonyl compounds. Therefore, this section emphasizes those aldol reactions which are performed with enantiomerically pure aldehydes. [Pg.563]

Active Substrate. If a new stereogenic center is ereated in a molecule that is already optically active, the two diastereomers are not (except fortuitously) formed in equal amounts. The reason is that the direction of attack by the reagent is determined by the groups already there. For certain additions to the carbon-oxygen double bond of ketones containing an asymmetric a carbon. Cram s rule predicts which diastereomer will predominate (diastereo-selecti vity). ... [Pg.147]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

The intramolecular reductive aldol reaction of keto-enones was successfully conducted under conditions similar to those described above, employing a cationic Rh complex and PI13P (Scheme 20) [34]. The keto-enone 63 was cyclized in the presence of added K2CO3 to give the ketone-aldol 64 in 72% yield with exclusive ds-selectivity. Dione-enone derivatives, for example 68 and 70, were efficiently cyclized to furnish bicyclic aldol products 69 and 71, respectively, wherein three stereogenic centers of the bicyclic product form stereoselectivity through the intermediacy of a Rh-enolate. [Pg.126]

Inspired by the proline-catalyzed Robinson annulation pioneered by Wiechert, Hajos, Parrish and coworkers [39], they were able to construct cyclohexanones of type 2-107 with up to four stereogenic centers with excellent enantio- and di-astereoselectivity from unsaturated ketones 2-104 and acyclic (l-ketoesters 2-105 in the presence of 10 mol% phenylalanine-derived imidazohdine catalyst 2-106. The final products can easily be converted into useful cyclohexanediols, as well as y- and e-lactones. [Pg.63]

In the hydrogenation of diketones by Ru-binap-type catalysts, the degree of anti-selectivity is different between a-diketones and / -diketones [Eqs (13) and (14)]. A variety of /1-diketones are reduced by Ru-atropisomeric diphosphine catalysts to indicate admirable anti-selectivity, and the enantiopurity of the obtained anti-diol is almost 100% (Table 21.17) [105, 106, 110-112]. In this two-step consecutive hydrogenation of diketones, the overall stereochemical outcome is determined by both the efficiency of the chirality transfer by the catalyst (catalyst-control) and the structure of the initially formed hydroxyketones having a stereogenic center (substrate-control). The hydrogenation of monohydrogenated product ((R)-hydroxy ketone) with the antipode catalyst ((S)-binap catalyst) (mis-... [Pg.685]

Dynamic kinetic resolution is possible for a-alkyl or a-alkoxy cyclic ketones in the presence of KOH, which causes mutation of the stereogenic center syn-alco-hols were obtained selectively with high enantioselectivity using ruthenium-3,5-xyl-binap. Dynamic kinetic resolution of 2-arylcycloalkanones also proceeded with extremely high syn-selectivity and with high enantioselectivity using ruthenium-binap-diamine as catalyst (Table 21.23) [12, 139, 140]. [Pg.701]

Generally speaking, since the a-carbon of a substituted allylic fragment is a stereogenic center, chirality may be transferred to the carbonyl compounds. Thus, very high diaste-reofacial selectivity has been obtained in the reaction of 32 with isopropyl methyl ketone due to a rigid transition state (Scheme 13.26) [54]. [Pg.466]


See other pages where Stereogenic centers ketones is mentioned: [Pg.22]    [Pg.108]    [Pg.174]    [Pg.207]    [Pg.234]    [Pg.490]    [Pg.490]    [Pg.503]    [Pg.533]    [Pg.634]    [Pg.295]    [Pg.29]    [Pg.47]    [Pg.55]    [Pg.58]    [Pg.59]    [Pg.453]    [Pg.619]    [Pg.47]    [Pg.167]    [Pg.169]    [Pg.415]    [Pg.649]    [Pg.892]    [Pg.1173]    [Pg.277]    [Pg.130]    [Pg.114]    [Pg.197]    [Pg.657]    [Pg.409]    [Pg.638]    [Pg.244]    [Pg.378]    [Pg.324]    [Pg.72]    [Pg.80]    [Pg.50]    [Pg.148]    [Pg.81]   
See also in sourсe #XX -- [ Pg.1799 ]




SEARCH



Ketones stereogenic center formation

Stereogenic center

© 2024 chempedia.info