Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical mechanics, nonlinear nonequilibrium

The fundamental question in transport theory is Can one describe processes in nonequilibrium systems with the help of (local) thermodynamic functions of state (thermodynamic variables) This question can only be checked experimentally. On an atomic level, statistical mechanics is the appropriate theory. Since the entropy, 5, is the characteristic function for the formulation of equilibria (in a closed system), the deviation, SS, from the equilibrium value, S0, is the function which we need to use for the description of non-equilibria. Since we are interested in processes (i.e., changes in a system over time), the entropy production rate a = SS is the relevant function in irreversible thermodynamics. Irreversible processes involve linear reactions (rates 55) as well as nonlinear ones. We will be mainly concerned with processes that occur near equilibrium and so we can linearize the kinetic equations. The early development of this theory was mainly due to the Norwegian Lars Onsager. Let us regard the entropy S(a,/3,. ..) as a function of the (extensive) state variables a,/ ,. .. .which are either constant (fi,.. .) or can be controlled and measured (a). In terms of the entropy production rate, we have (9a/0f=a)... [Pg.63]

Ray Kapral came to Toronto from the United States in 1969. His research interests center on theories of rate processes both in systems close to equilibrium, where the goal is the development of a microscopic theory of condensed phase reaction rates,89 and in systems far from chemical equilibrium, where descriptions of the complex spatial and temporal reactive dynamics that these systems exhibit have been developed.90 He and his collaborators have carried out research on the dynamics of phase transitions and critical phenomena, the dynamics of colloidal suspensions, the kinetic theory of chemical reactions in liquids, nonequilibrium statistical mechanics of liquids and mode coupling theory, mechanisms for the onset of chaos in nonlinear dynamical systems, the stochastic theory of chemical rate processes, studies of pattern formation in chemically reacting systems, and the development of molecular dynamics simulation methods for activated chemical rate processes. His recent research activities center on the theory of quantum and classical rate processes in the condensed phase91 and in clusters, and studies of chemical waves and patterns in reacting systems at both the macroscopic and mesoscopic levels. [Pg.248]


See other pages where Statistical mechanics, nonlinear nonequilibrium is mentioned: [Pg.288]    [Pg.254]    [Pg.3]    [Pg.327]    [Pg.376]    [Pg.1235]    [Pg.441]    [Pg.479]    [Pg.17]    [Pg.335]    [Pg.33]    [Pg.116]    [Pg.118]    [Pg.101]    [Pg.101]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Nonequilibrium

Nonequilibrium statistical mechanics

Nonlinear mechanics

Nonlinear statistics

Statistical nonequilibrium

© 2024 chempedia.info