Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stable/unstable manifolds complex

Consider the space state model R deflned by Eq.(52), showing an equilibrium point such that the matrix of the linearized system at this point has a real negative eigenvalue A and a pair of complex eigenvalues a j/3, j = /—1) with positive real parts 0.. In this situation, the equilibrium point has onedimensional stable manifold and two-dimensional unstable manifold. If the condition A < a is verified, it is possible that an homoclinic orbit appears, which tends to the equilibrium point. This orbit is very singular, and then the Shilnikov theorem asserts that every neighborhood of the homoclinic orbit contains infinite number of unstable periodic orbits. [Pg.270]

Thus, we have found that the mechanisms of escape from a nonhyperbolic attractor and a quasihyperbolic (Lorenz) attractor are quite different, and that the prehistory of the escape trajectories reflects the different structure of their chaotic attractors. The escape process for the nonhyperbolic attractor is realized via several steps, which include transitions between low-period saddle-cycles coexisting in the system phase space. The escape from the Lorenz attractor consist of two qualitatively different stages the first is defined by the stable and unstable manifolds of the saddle center point, and lies on the attractor the second is the escape itself, crossing the saddle boundary cycle surrounding the stable point attractor. Finally, we should like to point out that our main results were obtained via an experimental definition of optimal paths, confirming our experimental approach as a powerful instrument for investigating noise-induced escape from complex attractors. [Pg.517]

This is also the Hamiltonian of the activated complex. We will encounter it in Eq. (23) with the customary symbol H. Regardless of its stability properties or the size of the nonlinearity, Eq. (12) is always an invariant manifold. However, we are interested in the case when it is of the saddle type with stable and unstable manifolds. If the physical Hamiltonian is of the form of Eq. (1), then a preliminary, local transformation is not required. The manifold (12) is invariant regardless of the size of the nonlinearity. Moreover, it is also of saddle type with respect to stability in the transverse directions. This can be seen by examining Eq. (1). On qn = Pn = 0 the transverse directions, (i.e., q and p ), are still of saddle type (more precisely, they grow and decay exponentially). [Pg.187]

The stable and unstable sets correspond to the stable and unstable manifolds introduced for rest points and periodic orbits in Chapter 1. Unfortunately, if the attractors are more complex than rest points or periodic orbits, the question of the existence of stable and unstable manifolds becomes a difficult topological problem. In the applications that follow, these more complicated attractors do not appear, so one can simply deal with the stable manifold theorem. The Butler-McGehee lemma (used in Chapter 1) played a critical role in the first uses of persistence. The following lemma is a generalization of this work. It can be found (with slightly different hypotheses) in [BW], [DRS], and [HaW]. (In particular, the local compactness is not needed if a stronger condition - asymptotic smoothness - is placed on the semidynamical system.)... [Pg.279]

Spectral analysis of the linearized semiflow along a periodic solution is called Floquet theory. The eigenvalues p of the linearized period map are called Floquet multipliers. A Floquet exponent is a complex / such that exp(/3r) is a Floquet multiplier of the system, where t denotes the minimal period. A periodic solution is hyperbolic if, and only if, it possesses only the trivial Floquet multiplier p = 1 on the unit circle, and this multiplier has algebraic multiplicity one. Otherwise it is called non-hyperbolic. In ODEs hyperbolic periodic solutions possess stable and unstable manifolds, similarly to the case of hyperbolic equilibria. Non-hyperbolic periodic solutions possess center manifolds. [Pg.77]

If the first non-zero Lyapunov value is positive and if all non-critical characteristic exponents (71,...,7n) lie to the left of the imaginary axis in the complex plane, then the equilibrium state is a complex saddle-focus, as shown in Fig. 9.3.2(b). Its stable manifold is and the unstable manifold coincides with the center manifold W, The trajectories lying neither in nor pass nearby the equilibrium state. [Pg.102]

Such a critical fixed point is called a complex degenerate) saddle. Its stable manifold is y = 0, and the unstable manifold is given by x = 0, as shown in Fig. 10.2.6(b). Here, in the critical case, the trajectories behave qualitatively identical to those nearby the rough unstable cycle shown in Fig. 10.2.7(b). [Pg.117]

The heteroclinic cycles including the saddles whose unstable manifolds have different dimensions were first studied in [34, 35]. This study mostly focused on systems with complex dynamics. Let us, however, discuss here a case where the dynamics is simple. Let a three-dimensional infinitely smooth system have two equilibrium states 0 and O2 with real characteristic exponents, respectively, 7 > 0 > Ai > A2 and 772 > 1 > 0 > (i.e. the unstable manifold of 0 is onedimensional and the unstable manifold of O2 is two-dimensional). Suppose that the two-dimensional manifolds (Oi) and W 02) have a transverse intersection along a heteroclinic trajectory To (which lies neither in the corresponding strongly stable manifold, nor in the strongly unstable manifold). Suppose also that the one-dimensional unstable separatrix of Oi coincides with the one-dimensional stable separatrix of ( 2j so that a structurally unstable heteroclinic orbit F exists (Fig. 13.7.24). The additional non-degeneracy assumptions here are that the saddle values are non-zero and that the extended unstable manifold of Oi is transverse to the extended stable manifold of O2 at the points of the structurally unstable heteroclinic orbit F. [Pg.420]

The basins of attraction of the coexisting CA (strange attractor) and SC are shown in the Fig. 14 for the Poincare crosssection oyf = O.67t(mod27t) in the absence of noise [169]. The value of the maximal Lyapunov exponent for the CA is 0.0449. The presence of the control function effectively doubles the dimension of the phase space (compare (35) and (37)) and changes its geometry. In the extended phase space the attractor is connected to the basin of attraction of the stable limit cycle via an unstable invariant manifold. It is precisely the complexity of the structure of the phase space of the auxiliary Hamiltonian system (37) near the nonhyperbolic attractor that makes it difficult to solve the energy-optimal control problem. [Pg.504]


See other pages where Stable/unstable manifolds complex is mentioned: [Pg.192]    [Pg.284]    [Pg.293]    [Pg.56]    [Pg.145]    [Pg.174]    [Pg.212]    [Pg.395]    [Pg.402]    [Pg.405]    [Pg.427]    [Pg.428]    [Pg.71]    [Pg.115]    [Pg.523]    [Pg.553]    [Pg.653]    [Pg.82]   
See also in sourсe #XX -- [ Pg.254 , Pg.255 ]

See also in sourсe #XX -- [ Pg.254 , Pg.255 ]




SEARCH



Manifold complex

Manifolding

Stable manifold

Unstability

Unstable

Unstable manifold

© 2024 chempedia.info