Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic stabilization energy

Crystal field stabilization energy Thermodynamic aspects... [Pg.555]

Resonance stabilization energies are generally assessed from thermodynamic data. If we define to be the resonance stabilization energy of species i, then the heat of formation of that species will be less by an amount ej than for an otherwise equivalent molecule without resonance. Likewise, the AH for a reaction which is influenced by resonance effects is less by an amount Ae (A is the usual difference products minus reactants) than the AH for a reaction which is otherwise identical except for resonance effects ... [Pg.440]

Benson17 has tried to collect some thermodynamic data based on a number of empirical rules for this class of radicals. He estimated heats of formation for HS02, MeSO 2) PhSO 2 and HOSO 2 as —42, —55, —37 and — 98kcalmor respectively. He also estimated a stabilization energy for the benzenesulfonyl radical of 14 kcal mol"1, which is very similar to that of the benzyl radical. However, recent kinetic studies18 (vide infra) have shown that arenesulfonyls are not appreciably stabilized relative to alkanesulfonyl radicals, in accord with the ESR studies. [Pg.1094]

The determination of thermodynamic stability of a radical from C—H bond-dissociation energies (BDE) in suitable precursors has a long tradition. As in other schemes, stabilization has to be determined with respect to a reference system and cannot be given on an absolute basis. The reference BDE used first and still used is that in methane (Szwarc, 1948). Another more refined approach for the evaluation of substituent effects by this procedure uses more than one reference compound. The C—H BDE under study is approximated by a C—H bond in an unsubstituted molecule which resembles most closely the substituted system (Benson, 1965). Thus, distinctions are made between primary, secondary and tertiary C—H bonds. It is important to be aware of the different reference systems if stabilization energies are to be compared. [Pg.151]

This reaction, called the Claisen condensation, is interesting because, from consideration of bond and stabilization energies, it is expected to be unfavorable thermodynamically with AH° (vapor) equal to 6 kcal mole-1. This expectation is realized in practice, and much effort has been expended to determine conditions by which practical yields of the condensation product can be obtained. [Pg.829]

It has already been stated that chromium complexes of tridentate metallizable azo compounds occupy their position as the single most important class of metal complex dyestuffs because of their high stability. It should be noted, however, that in this context the term stability is not used in the thermodynamic sense but relates to the kinetic inertness of the complexes.25 Octahedral chromium(III) complexes have a tP electronic configuration and the ligand field stabilization energy associated with this is high.26 Ligand replacement reactions involve either a dissociative... [Pg.46]

Using the appropriate bond-separation reactions, the UF/3-21G aromatic stabilization energies are calculated to be 47.2, 36.4 and 22.5 kcal mol-1 for 22,11 and 21, respectively, compared to 59.0 kcal mol-1 for benzene503 thus the meta-, para- and ortho-isomers have 80, 62 and 38% of the aromaticity of benzene. The different orders of the thermodynamic stability of the three isomeric disilabenzene and of their aromatic stabilization energies... [Pg.18]

Stone and coworkers determined the /3-silicon effect in w-alkyl- and aryl-substituted carbenium ions20 and vinyl cations21 by measuring in a high-pressure mass spectrometer the thermodynamic data for the association of various alkenes and alkynes with trimethylsilylium ion. From their measured thermodynamic data they calculated, by using equations 13 and 14, the /S-silyl stabilization energies listed in Table 1. [Pg.605]

The neutral 1,4- and 1,2-quinone methides react as Michael acceptors. However, the reactivity of these quinone methides is substantially different from that of simple Michael acceptors. The 1,6-addition of protonated nucleophiles NuH to simple Michael acceptors results in a small decrease in the stabilization of product by the two conjugated 7T-orbitals, compared to the more extended three conjugated 7T-orbitals of reactant. However, the favorable ketonization of the initial enol product (Scheme 1) confers a substantial thermodynamic driving force to nucleophile addition. By comparison, the 1,6-addition of NuH to a 1,4-quinone methide results in a large increase in the -stabilization energy due to the formation of a fully aromatic ring (Scheme 2A). This aromatic stabilization is present to a smaller extent at the reactant quinone methide, where it is represented as the contributing zwitterionic valence bond structure for the 4-0 -substituted benzyl carbocation (Scheme 1). The ketonization of the product phenol (Scheme 2B) is unfavorable by ca. 19 kcal/mol.1,2... [Pg.40]

Perhaps a more fundamental application of crystal field spectral measurements, and the one that heralded the re-discovery of crystal field theory by Orgel in 1952, is the evaluation of thermodynamic data for transition metal ions in minerals. Energy separations between the 3d orbital energy levels may be deduced from the positions of crystal field bands in an optical spectrum, malting it potentially possible to estimate relative crystal field stabilization energies (CFSE s) of the cations in each coordination site of a mineral structure. These data, once obtained, form the basis for discussions of thermodynamic properties of minerals and interpretations of transition metal geochemistry described in later chapters. [Pg.146]

Chapter 5 summarizes the crystal field spectra of transition metal ions in common rock-forming minerals and important structure-types that may occur in the Earth s interior. Peak positions and crystal field parameters for the cations in several mineral groups are tabulated. The spectra of ferromagnesian silicates are described in detail and correlated with the symmetries and distortions of the Fe2+ coordination environments in the crystal structures. Estimates are made of the CFSE s provided by each coordination site accommodating the Fe2+ ions. Crystal field splitting parameters and stabilization energies for each of the transition metal ions, which are derived from visible to near-infrared spectra of oxides and silicates, are also tabulated. The CFSE data are used in later chapters to explain the crystal chemistry, thermodynamic properties and geochemical distributions of the first-series transition elements. [Pg.239]

One of the most successful applications of crystal field theory to transition metal chemistry, and the one that heralded the re-discovery of the theory by Orgel in 1952, has been the rationalization of observed thermodynamic properties of transition metal ions. Examples include explanations of trends in heats of hydration and lattice energies of transition metal compounds. These and other thermodynamic properties which are influenced by crystal field stabilization energies, including ideal solid-solution behaviour and distribution coefficients of transition metals between coexisting phases, are described in this chapter. [Pg.272]

Table 7.1. Crystal field splittings and stabilization energies of transition metal(II) compounds estimated from plots of thermodynamic data ... Table 7.1. Crystal field splittings and stabilization energies of transition metal(II) compounds estimated from plots of thermodynamic data ...
Chapter 7 discusses some of the thermodynamic properties of transition metal compounds and minerals that are influenced by crystal field effects. The characteristic double-humped curves in plots of thermodynamic data for suites of transition metal-bearing phases originate from contributions from the crystal field stabilization energy. However, these CFSE s, important as they are for explaining differences between individual cations, make up only a small fraction of the total energy of a transition metal compound. In the absence of spectroscopic data, CFSE s could be evaluated from the double-humped curves of thermodynamic data for isochemical compounds of the first transition series. [Pg.298]

With an emerging correlation between the solid-state reactivity and the radical stabilizing energy (RSE) of the a-substituents, Campos et al. suggested that solid-state reactivity may be predictable from the RSE values of the substituents [71]. Taking the reaction of acetone as a reference, and assuming that reactions in crystals must be thermoneutral or exothermic, these authors suggested that substituents with RSE 11 kcal mol 1 on both a-carbons should make the reaction thermodynamically possible. As indicated in Scheme 2.41, the proposed RSE value derives from the... [Pg.53]


See other pages where Thermodynamic stabilization energy is mentioned: [Pg.163]    [Pg.164]    [Pg.228]    [Pg.228]    [Pg.191]    [Pg.115]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.152]    [Pg.169]    [Pg.753]    [Pg.392]    [Pg.112]    [Pg.209]    [Pg.216]    [Pg.286]    [Pg.680]    [Pg.749]    [Pg.297]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.103]    [Pg.3]    [Pg.4]    [Pg.40]    [Pg.87]    [Pg.249]    [Pg.272]    [Pg.273]    [Pg.273]    [Pg.364]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Energy thermodynamics

Stability thermodynamics

Stability, stabilization thermodynamics

Thermodynamic Fluid Stability and the Gibbs Free Energy

Thermodynamic aspects ligand field stabilization energies (LFSE)

Thermodynamic energy

Thermodynamic stabilization

Thermodynamic stabilization delocalization energy

Thermodynamic stabilization energy-level

Thermodynamical stability

© 2024 chempedia.info