Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability cavitation bubble radius

In Fig. 1.1, the parameter space for transient and stable cavitation bubbles is shown in R0 (ambient bubble radius) - pa (acoustic amplitude) plane [15]. The ambient bubble radius is defined as the bubble radius when an acoustic wave (ultrasound) is absent. The acoustic amplitude is defined as the pressure amplitude of an acoustic wave (ultrasound). Here, transient and stable cavitation bubbles are defined by their shape stability. This is the result of numerical simulations of bubble pulsations. Above the thickest line, bubbles are those of transient cavitation. Below the thickest line, bubbles are those of stable cavitation. Near the left upper side, there is a region for bubbles of high-energy stable cavitation designated by Stable (strong nf0) . In the brackets, the type of acoustic cavitation noise is indicated. The acoustic cavitation noise is defined as acoustic emissions from... [Pg.3]

Fig. 1.1 The regions for transient cavitation bubbles and stable cavitation bubbles when they are defined by the shape stability of bubbles in the parameter space of ambient bubble radius (R0) and the acoustic amplitude (p ). The ultrasonic frequency is 515 kHz. The thickest line is the border between the region for stable cavitation bubbles and that for transient ones. The type of bubble pulsation has been indicated by the frequency spectrum of acoustic cavitation noise such as nf0 (periodic pulsation with the acoustic period), nfo/2 (doubled acoustic period), nf0/4 (quadrupled acoustic period), and chaotic (non-periodic pulsation). Any transient cavitation bubbles result in the broad-band noise due to the temporal fluctuation in the number of bubbles. Reprinted from Ultrasonics Sonochemistry, vol. 17, K.Yasui, T.Tuziuti, J. Lee, T.Kozuka, A.Towata, and Y. Iida, Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles, pp. 460-472, Copyright (2010), with permission from Elsevier... Fig. 1.1 The regions for transient cavitation bubbles and stable cavitation bubbles when they are defined by the shape stability of bubbles in the parameter space of ambient bubble radius (R0) and the acoustic amplitude (p ). The ultrasonic frequency is 515 kHz. The thickest line is the border between the region for stable cavitation bubbles and that for transient ones. The type of bubble pulsation has been indicated by the frequency spectrum of acoustic cavitation noise such as nf0 (periodic pulsation with the acoustic period), nfo/2 (doubled acoustic period), nf0/4 (quadrupled acoustic period), and chaotic (non-periodic pulsation). Any transient cavitation bubbles result in the broad-band noise due to the temporal fluctuation in the number of bubbles. Reprinted from Ultrasonics Sonochemistry, vol. 17, K.Yasui, T.Tuziuti, J. Lee, T.Kozuka, A.Towata, and Y. Iida, Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles, pp. 460-472, Copyright (2010), with permission from Elsevier...
In Fig. 9 the pressure in the liquid is plotted against the corresponding equilibrium radius of a cavitation bubble. The dashed curve represents a gas bubble and the solid curve a vapour bubble. Cavitation bubbles in a cluster are very sensitive to differences in the radius. In the case of a constant pressure, all bubbles with a radius smaller than the equilibrium radius are unstable and collapse. For gas bubbles this only holds as long as its equilibrium radius is greater than the radius (cf. Fig. 9). This mechanism, in addition to stability differences due to a different amount of gas/vapour contained in the bubbles. [Pg.348]


See other pages where Stability cavitation bubble radius is mentioned: [Pg.6]    [Pg.25]    [Pg.17]    [Pg.75]    [Pg.122]    [Pg.89]   
See also in sourсe #XX -- [ Pg.256 ]




SEARCH



Cavitated

Cavitates

Cavitation

Cavitational bubbles

Cavitations

© 2024 chempedia.info