Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral density functions, molecular dynamics calculations

In addition to corrections tising an appropriate spectral density function, in principle one also needs to consider an ensemble of structures. Bonvin et al. U993) used an ensemble iterative relaxation matrix approach in which the NOE is measured as an ensemble property. A relaxation matrix is built from an ensemble of structures, using averaging of contributions from different structures. The needed order parameters for fast motions were obtained fi um a 50-ps molecular dynamics calculation. The relaxation matrix is then used to refine individual structures. The new structures are used again to reconstruct the relaxation matrix, and a second new set of structures is defined. One repeats the process until the ensemble of structures is converged. The caveat espressed earlier that the accuracy of the result is limited by the accuracy of the spectral density function applies to all calculations of this typ . [Pg.319]

As seen from the above theoretical developments, accessing geometrical (and stereochemical) information implies at least an estimation of the dynamical part of the various relaxation parameters. The latter is represented by spectral densities which rest on the calculation of the Fourier transform of auto- or cross-correlation functions. These calculations require necessarily a model for describing molecular reorientation... [Pg.101]

The above experimental developments represent powerful tools for the exploration of molecular structure and dynamics complementary to other techniques. However, as is often the case for spectroscopic techniques, only interactions with effective and reliable computational models allow interpretation in structural and dynamical terms. The tools needed by EPR spectroscopists are from the world of quantum mechanics (QM), as far as the parameters of the spin Hamiltonian are concerned, and from the world of molecular dynamics (MD) and statistical thermodynamics for the simulation of spectral line shapes. The introduction of methods rooted into the Density Functional Theory (DFT) represents a turning point for the calculations of spin-dependent properties [7],... [Pg.145]

An alternative way to obtain the spectral density is by numerical simulation. It is possible, at least in principle, to include the intramolecular modes in this case, although it is rarely done [198]. A standard approach [33-36,41] utilizes molecular dynamics (MD) trajectories to compute the classical real time correlation function of the reaction coordinate from which the spectral density is calculated by the cosine transformation [classical limit of Eq. (9.3)]. The correspondence between the quantum and the classical densities of states via J(co) is a key for the evaluation of the quantum rate constant, that is, one can use the quantum expression for /Cj2 with the classically computed J(co). This is true only for a purely harmonic system [199]. Real solvent modes are anharmonic, although the response may well be linear. The spectral density of the harmonic system is temperature independent. For real nonlinear systems, J co) can strongly depend on temperature [200]. Thus, in a classical simulation one cannot assess equilibrium quantum populations correctly, which may result in serious errors in the computed high-frequency part of the spectrum. Song and Marcus [37] compared the results of several simulations for water available at that time in the literature [34,201] with experimental data [190]. The comparison was not in favor of those simulations. In particular, they failed to predict... [Pg.521]

The dynamics of different modes of molecular librations (hindered rotations) and intramolecular vibrations in supercritical water can now be analyzed in terms of velocity autocorrelation functions for the corresponding projections (Eqns. 22-27) (Kalinichev and Heinzinger 1992, 1995 Kalinichev 1993). The velocity autocorrelation functions calculated for the quantities Qi (Eqns. 25-27) are shown in Figure 19 for two extreme cases of high-density and low-density supercritical water. The Fourier transforms of these functions result in the spectral densities of the corresponding vibrational modes. They are shown in Figure 20 for the supercritical thermodynamic states listed in Table 5. [Pg.117]

Another approach to the calculation of IR spectra of hydrogen-bonded complexes is based on linear response theory, in which the spectral density is the Fourier transform of the autocorrelation function of the dipole moment operator involved in the IR transition [62,63]. Recently Car-Parrinello molecular dynamics (CPMD) [73] has been used to simulate IR spectra of hydrogen-bonded systems [64-72]. [Pg.308]


See other pages where Spectral density functions, molecular dynamics calculations is mentioned: [Pg.96]    [Pg.163]    [Pg.88]    [Pg.88]    [Pg.567]    [Pg.54]    [Pg.251]    [Pg.322]    [Pg.88]    [Pg.414]    [Pg.524]    [Pg.287]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Density calculating

Density calculations

Density functional calculation calculations

Density functional calculations

Density molecular

Dynamic calculations

Dynamical calculations

Dynamical spectral function

Molecular calculated

Molecular calculations

Molecular dynamics calculations

Molecular functionality

Spectral density

Spectral density dynamics

Spectral density function

Spectral density functions, molecular dynamics

Spectral function

Spectral functions function

© 2024 chempedia.info