Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spatio-temporal structure, nonlinear

Recently there has been an increasing interest in self-oscillatory phenomena and also in formation of spatio-temporal structure, accompanied by the rapid development of theory concerning dynamics of such systems under nonlinear, nonequilibrium conditions. The discovery of model chemical reactions to produce self-oscillations and spatio-temporal structures has accelerated the studies on nonlinear dynamics in chemistry. The Belousov-Zhabotinskii(B-Z) reaction is the most famous among such types of oscillatory chemical reactions, and has been studied most frequently during the past couple of decades [1,2]. The B-Z reaction has attracted much interest from scientists with various discipline, because in this reaction, the rhythmic change between oxidation and reduction states can be easily observed in a test tube. As the reproducibility of the amplitude, period and some other experimental measures is rather high under a found condition, the mechanism of the B-Z reaction has been almost fully understood until now. The most important step in the induction of oscillations is the existence of auto-catalytic process in the reaction network. [Pg.222]

Nonlinear dynamics of complex processes is an active research field with large numbers of publications in basic research and broad applications from diverse fields of science. Nonlinear dynamics as manifested by deterministic and stochastic evolution models of complex behaviour has entered statistical physics, physical chemistry, biophysics, geophysics, astrophysics, theoretical ecology, semiconductor physics and -optics etc. This research has induced a new terminology in science connected with new questions, problems, solutions and methods. New scenarios have emerged for spatio-temporal structures in dynamical systems far from equilibrium. Their analysis and possible control are intriguing and challenging aspects of the current research. [Pg.446]

The phenomenon of self organization occurs at nonstabHities of the sta tionary state and leads to the formation of temporal and spatio temporal dissipative structures. Remember that oscillating instabilities of stationary states of dynamic systems can be observed for the intermediate nonlinear stepwise reactions only, when no fewer than two intermediates are involved (see Section 3.5) and at least one of the elementary steps is kinet icaUy irreversible. The minimal sufficient requirements for the scheme of a process with temporal instabilities are not yet strictly formulated. However, in aU known examples of such reactions, the rate of the kineti caUy irreversible elementary reaction at one of the intermediate steps is at least in a quadratic dependence on the intermediate concentrations. Among these reactions are autocatalytic steps. [Pg.257]

Ecosystems are open systems. Their boundaries are permeable, permitting energy and matter to cross them. Effects of environmental constraints and influences on the system play an important role in the regulation and maintenance of the system s spatio-temporal as well as trophic organization and functioning. Indeed, ecosystems operate outside the realm of classical thermodynamics. Biological, chemical, and some physical processes inside of ecosystems are nonlinear. Stationary states of ecosystems are non-equilibrium states far from thermostatic equilibrium. In the course of time, entropy does not tend to a maximum value, or entropy production to a minimum. Entropy decreases when the order of organization and structure of the ecosystem increases. Entropy production is counterbalanced by export of entropy out of the system. [Pg.226]


See other pages where Spatio-temporal structure, nonlinear is mentioned: [Pg.223]    [Pg.45]    [Pg.45]    [Pg.438]    [Pg.5]    [Pg.160]    [Pg.612]    [Pg.84]    [Pg.98]    [Pg.190]    [Pg.375]    [Pg.51]    [Pg.750]    [Pg.190]    [Pg.519]   


SEARCH



Spatio-temporal

Spatio-temporal structure

Structure nonlinear

Structure temporal

Temporality

© 2024 chempedia.info