Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sonogashira reaction aryl iodides

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Cationic phosphine ligands containing guanidiniumphenyl moieties were originally developed in order to make use of their pronounced solubility in water [72, 73]. They were shown to form active catalytic systems in Pd-mediated C-C coupling reactions between aryl iodides and alkynes (Castro-Stephens-Sonogashira reaction) [72, 74] and Rh-catalyzed hydroformylation of olefins in aqueous two-phase systems [75]. [Pg.237]

A microwave-assisted Cu-catalyzed Sonogashira-type protocol on aryl iodide substrates without the involvement of a palladium catalyst has also been published (Scheme 54) [71]. Reactions were executed using Cut and CS2CO3 in NMP at 195 °C. The application seems to be fairly limited since there are indications that only (hetero)arylacetylenes are suitable coupHng partners for this protocol. In addition, aryl bromides react more sluggishly than aryl iodides. Moreover, even on aryl iodides the reaction times required are on the order of hours. [Pg.185]

The first examples of NHC-Pd complexes applied to the Sonogashira reaction were reported to show a limited scope in the coupling of aryl iodides and activated aryl bromides with acetylene [23,33,52]. However, the use of A-carbamoyl-substituted heterocyclic carbene Pd(ll) complexes expanded the use to alkyl-acetylenes and deactivated aryl iodides and bromides [124] (Scheme 6.40). [Pg.178]

A palladium catalyst with a less electron-rich ligand, 2,2-dipyridyl-methylamine-based palladium complexes (4.2), is effective for coupling of aryl iodides or bromides with terminal alkynes in the presence of pyrrolidine and tetrabutylammonium acetate (TBAB) at 100°C in water.37 However, the reactions were shown to be faster in NMP solvent than in water under the reaction conditions. Palladium-phosphinous acid (POPd) was also reported as an effective catalyst for the Sonogashira cross-coupling reaction of aryl alkynes with aryl iodides, bromides, or chlorides in water (Eq. 4.18).38... [Pg.109]

Besides palladium catalysts, nickel was also found to be an effective catalyst for the Sonogashira reaction in aqueous media. Recently, Beletskaya et al. reported a Ni(PPh3)2Cl2/CuI-catalyzed Sonogashira coupling reaction of terminal acetylenes with aryl iodides in aqueous dioxane in high yields (Eq. 4.19).39... [Pg.109]

In spite of the common conception that Ni catalysts are useless in the Sonogashira reaction, NiCl2(PPh3) has been disclosed as being able to catalyze the cross-coupling of aryl iodides with terminal acetylenes in aqueous dioxane, in the presence of Cul.147... [Pg.317]

The palladium-catalyzed arylation and alkenylation of terminal alkynes with aryl or alkenyl hahdes in presence of a copper(l) co-catalyst is called Sonogashira reaction. In the same way as in the other cross-coupling reactions described before, it is possible to immobihze the alkyne or the aromatic bromides, iodides or triflates on sohd supports (Scheme 3.15). [Pg.168]

The suitability of the polymer-Hnker conjugate was examined for a variety of transformations, in particular Pd°-catalyzed reactions. For instance, the polymer-bound aryl iodide (63) was transformed quantitatively in a Heck reaction to a cinnamic acid ester (64) and to biphenyl (66) in a Suzuki reaction. It gave an alkyne (65) in a Sonogashira reaction (Scheme 10.12). [Pg.464]

Sonogashira reaction. The first system consisted in the use of the oxime palladacycles 7a-f at elevated temperatures, without the aid of Cul or an amine base, for the coupling of aryl iodides and bromides. They also reported on the use of complex 48b in aqueous media for the coupling of aryl iodides and bromides and terminal acetylenes in excellent yields. ... [Pg.16]

Efficiency of the deprotection and coupling reactions are critical to the success of any iterative solid-phase synthesis. Shown in Scheme 1 is a triad of reactions for phenylacetylene oligomer synthesis trimethylsilyl deprotection,28 29 triazene unmasking of an iodobenzene,30 and the Sonogashira coupling of a terminal acetylene with an aryl iodide.31-33 Representative procedures for each step in this sequence are included at the end of this chapter. [Pg.122]

The coupling of terminal alkynes with aryl or vinyl halides under palladium catalysis is known as the Sonogashira reaction. This catalytic process requires the use of a palladium(0) complex, is performed in the presence of base, and generally uses copper iodide as a co-catalyst. One partner, the aryl or vinyl halide, is the same as in the Stille and Suzuki couplings but the other has hydrogen instead of tin or boron as the metal to be exchanged for palladium. [Pg.1330]


See other pages where Sonogashira reaction aryl iodides is mentioned: [Pg.582]    [Pg.35]    [Pg.318]    [Pg.194]    [Pg.127]    [Pg.130]    [Pg.132]    [Pg.308]    [Pg.194]    [Pg.565]    [Pg.204]    [Pg.101]    [Pg.158]    [Pg.17]    [Pg.17]    [Pg.674]    [Pg.45]    [Pg.263]    [Pg.219]    [Pg.113]    [Pg.46]    [Pg.50]    [Pg.52]    [Pg.74]    [Pg.230]    [Pg.36]    [Pg.191]    [Pg.223]    [Pg.224]    [Pg.324]    [Pg.16]    [Pg.166]    [Pg.5645]    [Pg.15]    [Pg.3192]    [Pg.46]   
See also in sourсe #XX -- [ Pg.510 , Pg.511 ]




SEARCH



Aryl Sonogashira

Aryl halides Sonogashira reactions, copper® iodide

Aryl iodides

Aryl iodides arylation

Aryl iodides reactions

Iodide reaction

Sonogashira reaction

© 2024 chempedia.info