Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents, acidic supercritical ammonia

The single largest use of ammonia is its direct apphcation as fertdizer, and in the manufacture of ammonium fertilizers that have increased world food production dramatically. Such ammonia-based fertilizers are now the primary source of nitrogen in farm soils. Ammonia also is used in the manufacture of nitric acid, synthetic fibers, plastics, explosives and miscellaneous ammonium salts. Liquid ammonia is used as a solvent for many inorganic reactions in non-aqueous phase. Other apphcations include synthesis of amines and imines as a fluid for supercritical fluid extraction and chromatography and as a reference standard in i N-NMR. [Pg.19]

Furthermore, life should be considered possible in aqueous environments that are extreme in their solute content, in their acidity or alkalinity, and in their temperature range, especially with ammonia as an antifreeze in low-temperature water-ammonia eutectics. The committee sees no reason to exclude the possibility of life in environments as diverse as the aerosols above Venus and the water-ammonia eutectics of Titan. It seems that life is less likely in more exotic solvents—such as liquid dinitrogen, liquid methane, and supercritical dihydrogen—but this conclusion is based on few data. [Pg.101]

A solvothermal process is one in which a material is either recrystallized or chemically synthesized from solution in a sealed container above ambient temperature and pressure. The recrystallization process was discussed in Section 1.5.1. In the present chapter we consider synthesis. The first solvothermal syntheses were carried out by Robert Wilhelm Bunsen (1811-1899) in 1839 at the University of Marburg. Bunsen grew barium carbonate and strontium carbonate at temperatures above 200°C and pressures above 100 bar (Laudise, 1987). In 1845, C. E. Shafhautl observed tiny quartz crystals upon transformation of freshly precipitated silicic acid in a Papin s digester or pressure cooker (Rabenau, 1985). Often, the name solvothermal is replaced with a term to more closely refer to the solvent used. For example, solvothermal becomes hydrothermal if an aqueous solution is used as the solvent, or ammothermal if ammonia is used. In extreme cases, solvothermal synthesis takes place at or over the supercritical point of the solvent. But in most cases, the pressures and temperatures are in the subcritical realm, where the physical properties of the solvent (e.g., density, viscosity, dielectric constant) can be controlled as a function of temperature and pressure. By far, most syntheses have taken place in the subcritical realm of water. Therefore, we focus our discussion of the materials synthesis on the hydrothermal process. [Pg.171]


See other pages where Solvents, acidic supercritical ammonia is mentioned: [Pg.323]    [Pg.74]    [Pg.433]    [Pg.1074]    [Pg.57]    [Pg.186]    [Pg.219]    [Pg.107]    [Pg.94]    [Pg.38]    [Pg.82]    [Pg.95]    [Pg.395]    [Pg.4]    [Pg.127]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Acid ammonia

Acids solvents

Ammonia acidity

Ammonia solvent

Ammonia, supercritical

Solvents acidic

Solvents acidity

Solvents ammonia, supercritical

Supercritical solvents

© 2024 chempedia.info