Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent multistage

Fig. 5. Arrangement of multistage contactors where F = feed flow (A-rich), R = raffinate flow, 5 = solvent flow (B-rich), and E = extract flow, (a)... Fig. 5. Arrangement of multistage contactors where F = feed flow (A-rich), R = raffinate flow, 5 = solvent flow (B-rich), and E = extract flow, (a)...
The principle of solvent extraction in refining is as follows when a dilute aqueous metal solution is contacted with a suitable extractant, often an amine or oxime, dissolved in a water-immiscible organic solvent, the metal ion is complexed by the extractant and becomes preferentially soluble in the organic phase. The organic and aqueous phases are then separated. By adding another aqueous component, the metal ions can be stripped back into the aqueous phase and hence recovered. Upon the identification of suitable extractants, and using a multistage process, solvent extraction can be used to extract individual metals from a mixture. [Pg.168]

Liquid-Liquid Extraction The actual configuration of mixers in multistage mixer-settlers and/or multistage columns is summarized in Section 15. A general handbook on this subject is Handbook of Solvent Extraction by Lowe, Beard, and Hanson. This handbook gives a comprehensive review of this entire operation as well. [Pg.1640]

Figure 10-14. The SNIA BPD process for producing caprolactam (1) toluene oxidation reactor, (2) fractionator, (3) hydrogenation reactor (stirred autoclave), (4) multistage reactor (conversion to caprolactam), (5) water dilution, (6) crystallizer, (7) solvent extraction, (8) fractionator. Figure 10-14. The SNIA BPD process for producing caprolactam (1) toluene oxidation reactor, (2) fractionator, (3) hydrogenation reactor (stirred autoclave), (4) multistage reactor (conversion to caprolactam), (5) water dilution, (6) crystallizer, (7) solvent extraction, (8) fractionator.
Many antibiotics have excellent solubihty in oiganic solvents and they are water immiscible. A multistage extraction separates the aqueous phase from the organic phase. Extraction can provide concentrated and purified products. [Pg.182]

An infinitely large volume of solvent is needed to achieve complete extraction of a solute in a single stage. This necessitates application of multistage extraction. It allows essentially complete recovery deploying a limited volume of the solvent. In the countercurrent proc-... [Pg.518]

The sample volume initially introduced onto the sorbent, the choice of sorbent and solvent system and careful control of the amount of solvent used are of paramount importance for effective pre-concentration and/or clean-up of the analyte in the sample. The number of theoretical plates in an SPE column is low (/V = 10-25). SPE is a multistage separation method and as such requires only a reasonable difference in extractability to separate two solutes. In SPE concentration factors of 1000 or more are possible, as compared to up to 100 for LLE with vortex mixing. [Pg.125]

Evaporation separates a volatile solvent from a solid. Single-stage evaporators tend to be used only when the capacity needed is small. For larger capacity, it is more usual to employ multistage systems that recover and reuse the latent heat of the vaporized material. Three different arrangements for a three-stage evaporator are illustrated in Figure 10.21. [Pg.206]

As could be seen from the above, the modem methods of synthesis of EG-AC composites are multistage long-term procedures requiring as a rule the use of some organic solvents or inert-gas atmosphere which makes them difficult to be scaled up by the industry. [Pg.444]

Considering the multistage industrial unit, in any equilibrium stage, the quantity of solution in the underflow may be a function of the concentration of the solution in the thickener, and the concentration of the overflow solution will be the same as that in the underflow. If the curved line EF (Figure 10.18) represents the experimentally determined composition of the underflow for various concentrations, any point f on this line represents the composition of a mixture of pure B with a solution of composition g, and Of/fg is the ratio of solution to solids in the underflow. If the amount of solution removed in the underflow is not affected by its concentration, the fractional composition of the underflow with respect to the insoluble material B (xB) is a constant, and is represented by a straight line, through E, parallel to the hypotenuse, such as EF. Point E represents the composition of the underflow when the solution is infinitely weak, that is when it contains pure solvent. If K is the mass of solution removed in the underflow per unit mass of solids, the ordinate of E is given by ... [Pg.532]

All freeze separation processes depend on the formation of pure solvent crystals from solution, as described for eutectic systems in Section 15.2.1. which allows single-stage operation. Solid-solution systems, requiring multistage-operation, are not usually economic. Several types of freeze crystallisation processes may be designated according to the kind of refrigeration system used as follows . [Pg.888]

The second part deals with applications of solvent extraction in industry, and begins with a general chapter (Chapter 7) that involves both equipment, flowsheet development, economic factors, and environmental aspects. Chapter 8 is concerned with fundamental engineering concepts for multistage extraction. Chapter 9 describes contactor design. It is followed by the industrial extraction of organic and biochemical compounds for purification and pharmaceutical uses (Chapter 10), recovery of metals for industrial production (Chapter 11), applications in the nuclear fuel cycle (Chapter 12), and recycling or waste treatment (Chapter 14). Analytical applications are briefly summarized in Chapter 13. The last chapters, Chapters 15 and 16, describe some newer developments in which the principle of solvent extraction has or may come into use, and theoretical developments. [Pg.31]

The centrifugal separator of the AKUEVE system is also used for phase separation in the SISAK technique [84]. SISAK is a multistage solvent extraction system that is used for studies of properties of short-lived radionuclides, e.g., the chemical properties of the heaviest elements, and solvent extraction behavior of compounds with exotic chemical states. In a typical SISAK experiment, Fig. 4.34, radionuclides are continuously transported from a production... [Pg.203]

In this process developed by Lurgi [17], the phenolic effluent is contacted with the solvent in a multistage mixer-settler countercurrent extractor (Fig. 10.8). The extract, containing phenol, is separated into phenol and solvent by distillation and solvent is recycled to the extractor. The aqueous raffinate phase is stripped from solvent with gas, and the solvent is recovered from the stripping gas by washing with crude phenol and passed to the extract distillation column. [Pg.437]

In preceding sections, fundamental coal chemistry, liquefaction mechanisms, solvent and catalyst characteristics were summarized briefly. In the following three sections, the roles and improvements in solvents and catalysts in multistage liquefaction processes are reviewed in more detail on the basis of recent progress in this area. [Pg.51]

In leaching processes, finely divided solids are contacted with solvents to remove soluble constituents. Usually some kind of multistage and countercurrent operation is desirable. The most bothersome aspect is handling of the wet solids. [Pg.488]


See other pages where Solvent multistage is mentioned: [Pg.61]    [Pg.78]    [Pg.88]    [Pg.89]    [Pg.89]    [Pg.282]    [Pg.250]    [Pg.3]    [Pg.459]    [Pg.427]    [Pg.183]    [Pg.476]    [Pg.1470]    [Pg.1490]    [Pg.2001]    [Pg.16]    [Pg.167]    [Pg.552]    [Pg.473]    [Pg.52]    [Pg.130]    [Pg.161]    [Pg.723]    [Pg.77]    [Pg.509]    [Pg.232]    [Pg.3]    [Pg.459]    [Pg.363]    [Pg.211]    [Pg.43]    [Pg.79]    [Pg.62]   
See also in sourсe #XX -- [ Pg.403 , Pg.404 , Pg.405 , Pg.406 ]




SEARCH



Multistage

© 2024 chempedia.info