Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects theoretical models

To understand the interesting experimental results, Sordo and coworkers studied theoretically the mechanism by carrying out PCM-UAFIF calculations in which the solvent effect was modeled as a bulk [27]. They found that the reaction barriers as well... [Pg.144]

The predictive capabilities of results of theoretical calculations of isotope effects have again been questioned,94 following an experimental and theoretical study of the decarboxylation of 3-carboxybenzisoxazole at room temperature (Kemp s reaction). The experimentally determined 15N isotope effect in acetone is 1.0312 0.0006 and the 13C isotope effect (1.0448, 1.0445, 1.0472, and 1.0418 in 1,4-dioxane, acetonitrile, DMF, and water, respectively) is independent of solvent polarity even though the reaction rate is markedly solvent dependent. Theoretical models at die semiempirical (AMI, PM3, SAMI) and ab initio (up to B3LYP/6-31+ + G ) levels were all unable to predict die experimental results quantitatively. [Pg.385]

Many additional refinements have been made, primarily to take into account more aspects of the microscopic solvent structure, within the framework of diffiision models of bimolecular chemical reactions that encompass also many-body and dynamic effects, such as, for example, treatments based on kinetic theory [35]. One should keep in mind, however, that in many cases die practical value of these advanced theoretical models for a quantitative analysis or prediction of reaction rate data in solution may be limited. [Pg.845]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

Tliis interpretation is based only upon the structural and electronic properties of the pyridinium cations. Tire calculation of relative activation Ijarri-ers for the competing substitution reactions will give more reliable results —especially if solvent effects are included in the calculations. In order to assess the reliability of actual theoretical methods as applied to model sys-... [Pg.196]

Theoretical models available in the literature consider the electron loss, the counter-ion diffusion, or the nucleation process as the rate-limiting steps they follow traditional electrochemical models and avoid any structural treatment of the electrode. Our approach relies on the electro-chemically stimulated conformational relaxation control of the process. Although these conformational movements179 are present at any moment of the oxidation process (as proved by the experimental determination of the volume change or the continuous movements of artificial muscles), in order to be able to quantify them, we need to isolate them from either the electrons transfers, the counter-ion diffusion, or the solvent interchange we need electrochemical experiments in which the kinetics are under conformational relaxation control. Once the electrochemistry of these structural effects is quantified, we can again include the other components of the electrochemical reaction to obtain a complete description of electrochemical oxidation. [Pg.374]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]

The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]

Another aspect that has been theoretically studied109,124,129 is experimental evidence that Diels-Alder reactions are quite sensitive to solvent effects in aqueous media. Several models have been developed to account for the solvent in quantum chemical calculations. They may be divided into two large classes discrete models, where solvent molecules are explicitly considered and continuum models, where the solvent is represented by its macroscopic magnitudes. Within the first group noteworthy is the Monte Carlo study... [Pg.20]

Theoretical considerations leading to a density functional theory (DFT) formulation of the reaction field (RF) approach to solvent effects are discussed. The first model is based upon isolelectronic processes that take place at the nucleus of the host system. The energy variations are derived from the nuclear transition state (ZTS) model. The solvation energy is expressed in terms of the electrostatic potential at the nucleus of a pseudo atom having a fractional nuclear charge. This procedure avoids the introduction of arbitrary ionic radii in the calculation of insertion energy, since all integrations involved are performed over [O.ooJ The quality of the approximations made are discussed within the frame of the Kohn-Sham formulation of density functional theory. [Pg.81]

In this review we discuss the theoretical frame which may serve as a basis for a DFT formulation of solvent effects for atoms and molecules embedded in polar liquid environments. The emphasis is focused on the calculation of solvation energies in the context of the RF model, including the derivation of an effective energy functional for the atomic and molecular systems coupled to an electrostatic external field. [Pg.83]

The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

A theoretical study at a HF/3-21G level of stationary structures in view of modeling the kinetic and thermodynamic controls by solvent effects was carried out by Andres and coworkers [294], The reaction mechanism for the addition of azide anion to methyl 2,3-dideaoxy-2,3-epimino-oeL-eiythrofuranoside, methyl 2,3-anhydro-a-L-ciythrofuranoside and methyl 2,3-anhydro-P-L-eiythrofuranoside were investigated. The reaction mechanism presents alternative pathways (with two saddle points of index 1) which act in a kinetically competitive way. The results indicate that the inclusion of solvent effects changes the order of stability of products and saddle points. From the structural point of view, the solvent affects the energy of the saddles but not their geometric parameters. Other stationary points geometries are also stable. [Pg.344]

Tapia, O. (1992) Theoretical evaluation of solvent effects,in Maksic, Z. B.(eds.), Theoretical models of chemical bonding, Spinger-Verlag, Berlin,pp.43.5-458. [Pg.348]

Tortonda, F. R., Pascual-Ahuir, J. L., Silla, E. and Tunon, I. Solvent effects on the thermodynamics and kinetics of the proton transfer between hydronium ions and ammonia. A Theoretical study using the continuum and the discrete models, J. Phys. Chem., 99 (1995), 12525-12531... [Pg.357]

In chapter 2, Profs. Contreras, Perez and Aizman present the density functional (DF) theory in the framework of the reaction field (RF) approach to solvent effects. In spite of the fact that the electrostatic potentials for cations and anions display quite a different functional dependence with the radial variable, they show that it is possible in both cases to build up an unified procedure consistent with the Bom model of ion solvation. The proposed procedure avoids the introduction of arbitrary ionic radii in the calculation of insertion energy. Especially interesting is the introduction of local indices in the solvation energy expression, the effect of the polarizable medium is directly expressed in terms of the natural reactivity indices of DF theory. The paper provides the theoretical basis for the treatment of chemical reactivity in solution. [Pg.388]


See other pages where Solvent effects theoretical models is mentioned: [Pg.189]    [Pg.120]    [Pg.861]    [Pg.219]    [Pg.9]    [Pg.632]    [Pg.203]    [Pg.175]    [Pg.270]    [Pg.383]    [Pg.384]    [Pg.385]    [Pg.83]    [Pg.322]    [Pg.307]    [Pg.319]    [Pg.28]    [Pg.42]    [Pg.86]    [Pg.185]    [Pg.34]    [Pg.525]    [Pg.357]    [Pg.288]    [Pg.31]    [Pg.323]    [Pg.390]    [Pg.35]    [Pg.269]    [Pg.103]    [Pg.140]    [Pg.1049]   
See also in sourсe #XX -- [ Pg.90 , Pg.91 ]




SEARCH



Modeling solvents

Solvent effect modeling

Solvent effects models

Solvent model

Solvent models model

Theoretical methods solvent effect modeling

Theoretical model

Theoretical modeling

Theoretical modelling

© 2024 chempedia.info