Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects Maxwell field

The key differences between the PCM and the Onsager s model are that the PCM makes use of molecular-shaped cavities (instead of spherical cavities) and that in the PCM the solvent-solute interaction is not simply reduced to the dipole term. In addition, the PCM is a quantum mechanical approach, i.e. the solute is described by means of its electronic wavefunction. Similarly to classical approaches, the basis of the PCM approach to the local field relies on the assumption that the effective field experienced by the molecule in the cavity can be seen as the sum of a reaction field term and a cavity field term. The reaction field is connected to the response (polarization) of the dielectric to the solute charge distribution, whereas the cavity field depends on the polarization of the dielectric induced by the applied field once the cavity has been created. In the PCM, cavity field effects are accounted for by introducing the concept of effective molecular response properties, which directly describe the response of the molecular solutes to the Maxwell field in the liquid, both static E and dynamic E, [8,47,48] (see also the contribution by Cammi and Mennucci). [Pg.172]

The OWB equations obtained in this semiclassical scheme analyse the effective polarizabilities in term of solvent effects on the polarizabilities of the isolated molecules. Three main effects arise due to (a) a contribution from the static reaction field which results in a solute polarizability, different from that of the isolated molecules, (b) a coupling between the induced dipole moments and the dielectric medium, represented by the reaction field factors FR n, (c) the boundary of the cavity which modifies the cavity field with respect the macroscopic field in the medium (the Maxwell field) and this effect is represented by the cavity field factors /c,n. [Pg.248]

Chemical thermodynamics and kinetics provide the formalism to describe the observed dependencies of chemical-conformational reactions on the external physical state variables temperature, pressure, electric and magnetic fields. In the present account the theoretical foundations for the analysis of electrical-chemical processes are developed on an elementary level. It should be remarked that in most treatments of electric field effects on chemical processes the theoretical expressions are based on the homogeneous-field approximation of the continuum relationship between the total polarization and the electric field strength (Maxwell field). When, however, conversion factors that account for the molecular (inhomogeneous) nature of real systems are given, they are usually only applicable for nonpolar solvents and thus exclude aqueous solutions. Therefore, in the present study, particular emphasis is placed on expressions which relate experimentally observable system properties (such as optical or electrical quantities) with the applied (measured) electric field, and which include applications to aqueous solutions. [Pg.99]

Quantitative simulation of spectra as outlined above is complicated for particle films. The material within the volume probed by the evanescent field is heterogeneous, composed of solvent entrapped in the void space, support material, and active catalyst, for example a metal. If the particles involved are considerably smaller than the penetration depth of the IR radiation, the radiation probes an effective medium. Still, in such a situation the formalism outlined above can be applied. The challenge is associated with the determination of the effective optical constants of the composite layer. Effective medium theories have been developed, such as Maxwell-Garnett 61, Bruggeman 62, and other effective medium theories 63, which predict the optical constants of a composite layer. Such theories were applied to metal-particle thin films on IREs to predict enhanced IR absorption within such films. The results were in qualitative agreement with experiment 30. However, quantitative results of these theories depend not only on the bulk optical constants of the materials (which in most cases are known precisely), but also critically on the size and shape (aspect ratio) of the metal particles and the distance between them. Accurate information of this kind is seldom available for powder catalysts. [Pg.239]


See other pages where Solvent effects Maxwell field is mentioned: [Pg.171]    [Pg.238]    [Pg.249]    [Pg.362]    [Pg.341]    [Pg.260]    [Pg.270]    [Pg.137]    [Pg.148]    [Pg.275]    [Pg.60]    [Pg.15]    [Pg.197]    [Pg.148]    [Pg.106]    [Pg.41]   
See also in sourсe #XX -- [ Pg.342 ]




SEARCH



Maxwell effect

Maxwell field

© 2024 chempedia.info