Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions vapour pressure

Orthophosphorio Acid —Preparation—Physical Properties of Solid Hydrates of P2Os—Solubilities, Melting-points and Eutectics of the System HjP04-Ha0—Densities of Aqueous Solutions—Vapour Pressures—Conductivities of Concentrated and Dilute Solutions—Viscosities—Refractive Index—Basicity and Neutralisation of the Phosphoric Acids—Constitution... [Pg.255]

In dilute THF—HgO solutions, vapour-pressure measurements show that NaNOg, NaClOj, and AgN03 are preferentially solvated by water, and NaClO and NaBPh are preferentially solvated by A study has been... [Pg.460]

Temperature Control.—For moderate accuracy, the temperature of the column should be controlled to within 0.2 K if the solute vapour pressure is known to be better than 1 per cent. A good air thermostat is capable of this control. It is, however, much easier to control the temperature of the water bath, and a simple on-off relay in conjunction with a toluene regulator and backing heater is capable of controlling the temperature to 0.01 K. This is the order of temperature control required for the accurate determination of activity coefficients. [Pg.55]

Effect of extraction temperature. In SFE, an increase of the extraction temperature, although implying a decrease of the fluid density, could be also responsible for an increase in the extraction yield due to an increase of the solute vapour pressure. [Pg.62]

At z in the curve, however (the minimum of vapour pressure), the solution and vapour are in equilibrium and the liquid at this point will distil without any change in composition. The mixture at z is said to be azeotropic or a constant boiling mixture. The composition of the azeotropic mixture does vary with pressure. [Pg.48]

Raoult s law When a solute is dissolved in a solvent, the vapour pressure of the latter is lowered proportionally to the mole fraction of solute present. Since the lowering of vapour pressure causes an elevation of the boiling point and a depression of the freezing point, Raoult s law also applies and leads to the conclusion that the elevation of boiling point or depression of freezing point is proportional to the weight of the solute and inversely proportional to its molecular weight. Raoult s law is strictly only applicable to ideal solutions since it assumes that there is no chemical interaction between the solute and solvent molecules. [Pg.341]

Experiments on sufficiently dilute solutions of non-electrolytes yield Henry s laM>, that the vapour pressure of a volatile solute, i.e. its partial pressure in a gas mixture in equilibrium with the solution, is directly proportional to its concentration, expressed in any units (molar concentrations, molality, mole fraction, weight fraction, etc.) because in sufficiently dilute solution these are all proportional to each other. [Pg.360]

Apart from the techniques described in this chapter other methods of organic film fonnation are vacuum deposition or film fonnation by allowing a melt or a solution of the material to spread on the substrate and subsequently to solidify. Vacuum deposition is limited to molecules with a sufficiently high vapour pressure while a prerequisite for the latter is an even spreading of the solution or melt over the substrate, which depends on the nature of the intennolecular forces. This subject is of general relevance to the fonnation of organic films. [Pg.2609]

Iodine is a dark-coloured solid which has a glittering crystalline appearance. It is easily sublimed to form a bluish vapour in vacuo. but in air, the vapour is brownish-violet. Since it has a small vapour pressure at ordinary temperatures, iodine slowly sublimes if left in an open vessel for the same reason, iodine is best weighed in a stoppered bottle containing some potassium iodide solution, in which the iodine dissolves to form potassium tri-iodide. The vapour of iodine is composed of I2 molecules up to about 1000 K above this temperature, dissociation into iodine atoms becomes appreciable. [Pg.320]

These can be prepared by electrolytic oxidation of chlorates(V) or by neutralisation of the acid with metals. Many chlorates(VII) are very soluble in water and indeed barium and magnesium chlorates-(VII) form hydrates of such low vapour pressure that they can be used as desiccants. The chlorate(VII) ion shows the least tendency of any negative ion to behave as a ligand, i.e. to form complexes with cations, and hence solutions of chlorates (VII) are used when it is desired to avoid complex formation in solution. [Pg.342]

At the outset it will be profitable to deal with an ideal solution possessing the following properties (i) there is no heat effect when the components are mixed (ii) there is no change in volume when the solution is formed from its components (iii) the vapour pressure of each component is equal to the vapour pressure of the pure substances multiplied by its mol fraction in the solution. The last-named property is merely an expression of Raoult s law, the vapour pressure of a substance is pro-... [Pg.5]

Thus a solution containing mol fractions of 0-25 and 0-75 of A and B respectively is in equilibrium with a vapour containing 16-7 and 83 -3 mol per cent, of A and B respectively. The component B with the higher vapour pressure is relatively more concentrated in the vapour phase than in the liquid phase. [Pg.6]

The boiling point increases regularly. The boiling point - composition diagram for such a system is shown in Fig. 1, 4, 2 (the complementary vapour pressure - composition diagram is depicted in Fig. I, 4, 3 for purposes of comparison only). Let us consider the behaviour of such a liquid pair upon distillation. If a solution of composition is heated, the vapour pressure will rise until at the point ij it is equal to the pressure of the atmosphere, and boiling commences at temperature The com-... [Pg.8]

It is a well-known fact that substances like water and acetic acid can be cooled below the freezing point in this condition they are said to be supercooled (compare supersaturated solution). Such supercooled substances have vapour pressures which change in a normal manner with temperature the vapour pressure curve is represented by the dotted line ML —a continuation of ML. The curve ML lies above the vapour pressure curve of the solid and it is apparent that the vapour pressure of the supersaturated liquid is greater than that of the solid. The supercooled liquid is in a condition of metastabUity. As soon as crystallisation sets in, the temperature rises to the true freezing or melting point. It will be observed that no dotted continuation of the vapour pressure curve of the solid is shown this would mean a suspended transformation in the change from the solid to the liquid state. Such a change has not been observed nor is it theoretically possible. [Pg.23]

Deliquescence and efflorescence. A substance is said to deliquesce (Latin to become liquid) when it forms a solution or liquid phase upon standing in the air. The essential condition is that the vapour pressure of the saturated solution of the highest hydrate at the ordinary temperature should be less than the partial pressure of the aqueous vapour in the atmosphere. Water will be absorbed by the substance, which gradually liquefies to a saturated solution water vapour will continue to be absorbed by the latter until an unsaturated solution, having the same vapour pressure as the partial pressure of water vapour in the air, is formed. In order that the vapour pressure of the saturated solution may be sufficiently low, the substance must be extremely soluble in water, and it is only such substances (e.g., calcium chloride, zinc chloride and potassium hydroxide) that deliquesce. [Pg.43]

The vapour pressure of nitric acid, over solutions in sulphuric acid, reaches a maximum with 84-5 % sulphuric acid, the acidity corresponding to the formation of the monohydrate. ... [Pg.21]

Vandoni and Viala examined the vapour pressures of mixtures of nitric acid in acetic anhydride, and concluded that from o to mole-fraction of nitric acid the solution consisted of acetyl nitrate, acetic acid and excess anhydride in equimolar proportions the solution consisted of acetyl nitrate and acetic acid, and on increasing the fraction of nitric acid, dinitrogen pentoxide is formed, with a concentration which increases with the concomitant decrease in the concentration of acetyl nitrate. [Pg.79]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

D = diffusilivity of the solvent vapour from the sample solution (cm s ) o = surface tension of sample solution (erg-cm ) p = vapour pressure of sample solution (mm Hg X 1-359 = g cm )... [Pg.138]

Some metals are soluble as atomic species in molten silicates, the most quantitative studies having been made with Ca0-Si02-Al203(37, 26, 27 mole per cent respectively). The results at 1800 K gave solubilities of 0.055, 0.16, 0.001 and 0.101 for the pure metals Cu, Ag, Au and Pb. When these metal solubilities were compared for metal alloys which produced 1 mm Hg pressure of each of these elements at this temperature, it was found drat the solubility decreases as the atomic radius increases, i.e. when die difference in vapour pressure of die pure metals is removed by alloy formation. If the solution was subjected to a temperature cycle of about 20 K around the control temperamre, the copper solution precipitated copper particles which grew with time. Thus the liquid metal drops, once precipitated, remained stable thereafter. [Pg.310]

An important element that must be recovered from zinc is cadmium, which is separated by distillation. The alloys of zinc with cadmium are regular solutions with a heat of mixing of 8300 Xcd fzn J gram-atom and the vapour pressures of the elements close to the boiling point of zinc (1180K) are... [Pg.357]

For manganese which has a vapour pressure of 4.57 x 10 atmos at 1873 K, this depletion amounts to about one half of the bulk concentration, thus lowering the rate of manganese evaporation by half. These equations may be used to derive tire condition for the preferential removal of a solute. A, from liquid iron... [Pg.361]


See other pages where Solutions vapour pressure is mentioned: [Pg.31]    [Pg.282]    [Pg.319]    [Pg.68]    [Pg.31]    [Pg.282]    [Pg.319]    [Pg.68]    [Pg.106]    [Pg.115]    [Pg.127]    [Pg.170]    [Pg.624]    [Pg.1121]    [Pg.1912]    [Pg.491]    [Pg.5]    [Pg.5]    [Pg.6]    [Pg.6]    [Pg.7]    [Pg.9]    [Pg.23]    [Pg.43]    [Pg.150]    [Pg.150]    [Pg.631]    [Pg.19]    [Pg.158]    [Pg.361]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Electrolyte solutions vapour pressure

Ideal solutions vapour pressure

Leungs asymptotic solutions for vapour pressure systems

Perfect solutions partial vapour pressures

Perfect solutions total vapour pressure

Perfect solutions vapour pressure

Salts, vapour pressure saturated solutions

Solution-vapour equilibrium constant pressure curves

The dependence of vapour -solution equilibria on temperature and pressure

Vapour pressure

Vapour pressure and solution composition Raoults law

Vapour pressure of ideal solutions

Vapour pressure of polymer solution

Vapour pressure of regular solution

Vapour pressure of solute

© 2024 chempedia.info