Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soil systems unsaturated conditions

Capillary barrier cover systems consist of a finer-grained soil layer (like that of a monolithic cover system) overlying a coarser-grained material layer, usually sand or gravel, as shown conceptually in Figure 25.3. The differences in the unsaturated hydraulic properties between the two layers minimize percolation into the coarser-grained (lower) layer under unsaturated conditions. [Pg.1062]

The bathtub effect occurs, in part, because most wastes have much higher hydraulic conductivities than the natural material into which they are placed they may also have very different unsaturated soil—moisture characteristics. The hydraulic conductivity of some wastes can be reduced by compaction. The bathtub effect also occurs because more infiltration enters the disposal excavation than would under normal undisturbed conditions. Trench covers may be constructed to achieve the desired hydraulic conductivity and to limit infiltration for the required period of containment or until compaction of the wastes occurs however, it is difficult to maintain the trench covers. The covers must withstand attack by plants, weather (freeze—thaw, wet—dry), erosion, and strains caused by consolidation within the trench. Most trench covers are not capable of meeting these demanding requirements without costly long-term maintenance programs. The cover should be designed to allow for expected consolidation and to utilize hydro-geological concepts of saturated and unsaturated flow systems present at the site. [Pg.363]

Although anomalous diffusion is expected in fractal pore systems, the presence of anomalous diffusion does not prove that the porous media is fractal. A heterogeneity along transport pathways may result in an anomalous transport regardless of the presence or the absence of self-similarity of the pore space (Beven et al., 1993). The physical interpretation of Levy motions does not presume the presence of fractal scaling in the porous media in which the motions occur (Klafter et al, 1990). The applicability of the FADE may be closely related to the distribution of pore-water velocities. In saturated media, the presence of heavy-tailed distributions of the hydraulic conductivity directly implies the validity of the FADE (Meer-schaert et al., 1999 Benson et al., 1999). The heavy-tailed hydraulic conductivity distributions were found in geologic media (Painter, 1996 Benson et al., 1999). Heavy-tailed velocity distributions can also be expected in unsaturated and structured soils, and therefore the FADE may be a useful model in these conditions. [Pg.69]


See other pages where Soil systems unsaturated conditions is mentioned: [Pg.164]    [Pg.44]    [Pg.495]    [Pg.33]    [Pg.347]    [Pg.223]    [Pg.187]    [Pg.91]    [Pg.259]    [Pg.223]    [Pg.120]    [Pg.330]    [Pg.332]    [Pg.223]    [Pg.626]    [Pg.470]    [Pg.449]    [Pg.416]    [Pg.138]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Conditioning system

Soil conditioning

Soil conditions

Soil system

Systems conditions 82

Unsaturated systems

Unsaturation conditions

© 2024 chempedia.info