Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium-potassium ion pump

Three kinds of equilibrium potentials are distinguishable. A metal-ion potential exists if a metal and its ions are present in balanced phases, e.g., zinc and zinc ions at the anode of the Daniell element. A redox potential can be found if both phases exchange electrons and the electron exchange is in equilibrium for example, the normal hydrogen half-cell with an electron transfer between hydrogen and protons at the platinum electrode. In the case where a couple of different ions are present, of which only one can cross the phase boundary — a situation which may exist at a semiperme-able membrane — one obtains a so called membrane potential. Well-known examples are the sodium/potassium ion pumps in human cells. [Pg.10]

The brain has a very high rate of metabolism. Although accounting for only 1 / 50 of the body mass its utilization of energy amounts to 1/ 5 of the basal metabolism. This is 20 watts and is nearly constant day and night. It reflects the unusually active metabolism of neurons, a major part of which can be attributed to the sodium-potassium ion pumps in the membranes and to the maintenance of the excitable state.5363 The source of energy for these processes is the ATP that is... [Pg.1776]

One of the most common control mechanisms for enzymes is by phosphorylation. The side-chain hydroxyl groups of serine, threonine, and tyrosine can all form phosphate esters. Transport across membranes provides an important example, such as the sodium-potassium ion pump, which moves potassium into the... [Pg.179]

FIGURE 8.24 The sodium-potassium ion pump (see text for details). [Pg.218]

ANIMATED FIGURE 8.25 A mechanism for NaVK+ATPase (the sodium-potassium ion pump). The model assumes two principal conformations, Ej and E2. Binding of Na+ ions to Ej is followed by phosphorylation and release of ADP. Na+ ions are transported and released, and K+ ions are bound before dephosphorylation of the enzyme. Transport and release of K+ ions complete the cycle. Sign in at www.thomsonedu.com/iogin for an animated version of this figure. [Pg.219]

Pumps move ions and molecules up their electrochemical gradient. Pumps require energy, usually in the form of ATP hydrolysis. Sodium-potassium ATPase is an example of a pump. Cells maintain a higher concentration of potassium inside the cell than they do outside the cell. Sodium is maintained low inside, high outside. Sodium-potassium ATPase pumps three sodium ions from inside the cell to outside. This is the unfavorable direction—Na+ moves from low concentration to a higher one and against the membrane potential. At the same time, it also... [Pg.43]

Inorganic ions, such as sodium and potassium, move through the cell membrane by active transport. Unlike diffusion, energy is required for active transport as the chemical is moving from a lower concentration to a higher one. One example is the sodium-potassium ATPase pump, which transports sodium [Na ] ions out of the cell and potassium [K ] into the cell. [Pg.21]

This must obviously be the opposite of passive transport. Active transport does require energy, usually in the form of the consumption of ATP or GTP, because the molecules are moving against the concentration gradient from an area of lower concentration to an area of higher concentration. The most well known active transport system is the Sodium-Potassium-ATPase Pump (Na" "- K+ZATPase) which maintains an imbalance of sodium and potassium ions inside and outside the membrane, respectively. See Figure 3. [Pg.20]

The plasma membrane of neurons, like all other cells, has an unequal distribution of ions and electrical charges between its two sides. Sodium-potassium ATPase pumps maintain this unequal concentration by actively transporting ions against their concentration gradients sodium in, potassium out. The membrane is positive outside and negative inside. This charge difference is referred to as the resting potential and is measured in millivolts (=—65 mV). [Pg.255]

Fig. 5. Tentative mixed potential model for the sodium-potassium pump in biological membranes the vertical lines symbolyze the surface of the ATP-ase and at the same time the ordinate of the virtual current-voltage curves on either side resulting in different Evans-diagrams. The scale of the absolute potential difference between the ATP-ase and the solution phase is indicated in the upper left comer of the figure. On each side of the enzyme a mixed potential (= circle) between Na+, K+ and also other ions (i.e. Ca2+ ) is established, resulting in a transmembrane potential of around — 60 mV. This number is not essential it is also possible that this value is established by a passive diffusion of mainly K+-ions out of the cell at a different location. This would mean that the electric field across the cell-membranes is not uniformly distributed. Fig. 5. Tentative mixed potential model for the sodium-potassium pump in biological membranes the vertical lines symbolyze the surface of the ATP-ase and at the same time the ordinate of the virtual current-voltage curves on either side resulting in different Evans-diagrams. The scale of the absolute potential difference between the ATP-ase and the solution phase is indicated in the upper left comer of the figure. On each side of the enzyme a mixed potential (= circle) between Na+, K+ and also other ions (i.e. Ca2+ ) is established, resulting in a transmembrane potential of around — 60 mV. This number is not essential it is also possible that this value is established by a passive diffusion of mainly K+-ions out of the cell at a different location. This would mean that the electric field across the cell-membranes is not uniformly distributed.
The proposed model for the so-called sodium-potassium pump should be regarded as a first tentative attempt to stimulate the well-informed specialists in that field to investigate the details, i.e., the exact form of the sodium and potassium current-voltage curves at the inner and outer membrane surfaces to demonstrate the excitability (e.g. N, S or Z shaped) connected with changes in the conductance and ion fluxes with this model. To date, the latter is explained by the theory of Hodgkin and Huxley U1) which does not take into account the possibility of solid-state conduction and the fact that a fraction of Na+ in nerves is complexed as indicated by NMR-studies 124). As shown by Iljuschenko and Mirkin 106), the stationary-state approach also considers electron transfer reactions at semiconductors like those of ionselective membranes. It is hoped that this article may facilitate the translation of concepts from the domain of electrodes in corrosion research to membrane research. [Pg.240]

Sodium hexakis(formato)molybdate, 3, 1235 Sodium hypochlorite alkene epoxidation manganese catalysts, 6,378 Sodium ions biology, 6, 559 selective binding biology, 6, 551 Sodium molybdate, 3, 1230 Sodium peroxoborate, 3,101 Sodium/potassium ATPase, 6, 555 vanadate inhibition, 3, 567 Sodium pump, 6, 555 mechanism, 6, 556 Sodium pyroantimonate, 3, 265 Sodium salts... [Pg.224]

The ionic composition of the cell is maintained by operation of the sodium-potassium pump, which pumps ions from more dilute to more concentrated solutions the Na ions from the cytoplasm to the solution outside, and the K+ in the opposite... [Pg.578]

A well-known example of active transport is the sodium-potassium pump that maintains the imbalance of Na and ions across cytoplasmic membranes. Flere, the movement of ions is coupled to the hydrolysis of ATP to ADP and phosphate by the ATPase enzyme, liberating three Na+ out of the cell and pumping in two K [21-23]. Bacteria, mitochondria, and chloroplasts have a similar ion-driven uptake mechanism, but it works in reverse. Instead of ATP hydrolysis driving ion transport, H gradients across the membranes generate the synthesis of ATP from ADP and phosphate [24-27]. [Pg.727]

The ventricular action potential is depicted in Fig. 6-2.2 Myocyte resting membrane potential is usually -70 to -90 mV, due to the action of the sodium-potassium adenosine triphosphatase (ATPase) pump, which maintains relatively high extracellular sodium concentrations and relatively low extracellular potassium concentrations. During each action potential cycle, the potential of the membrane increases to a threshold potential, usually -60 to -80 mV. When the membrane potential reaches this threshold, the fast sodium channels open, allowing sodium ions to rapidly enter the cell. This rapid influx of positive ions... [Pg.109]

With active transport, energy is expended to move a substance against its concentration gradient from an area of low concentration to an area of high concentration. This process is used to accumulate a substance on one side of the plasma membrane or the other. The most common example of active transport is the sodium-potassium pump that involves the activity of Na+-K+ ATPase, an intrinsic membrane protein. For each ATP molecule hydrolyzed by Na+-K+ ATPase, this pump moves three Na+ ions out of the cell and two K+ ions into it. As will be discussed further in the next chapter, the activity of this pump contributes to the difference in composition of the extracellular and intracellular fluids necessary for nerve and muscle cells to function. [Pg.14]

An essential requirement for diffusion of Na+ ions is the creation of a concentration gradient for sodium between the filtrate and intracellular fluid of the epithelial cells. This is accomplished by the active transport ofNa+ ions through the basolateral membrane of the epithelial cells (see Figure 19.4). Sodium is moved across this basolateral membrane and into the interstitial fluid surrounding the tubule by the Na+, K+-ATPase pump. As a result, the concentration of Na+ ions within the epithelial cells is reduced, facilitating the diffusion of Na+ ions into the cells across the luminal membrane. Potassium ions transported into the epithelial cells as a result of this pump diffuse back into the interstitial fluid (proximal tubule and Loop of Henle) or into the tubular lumen for excretion in the urine (distal tubule and collecting duct). [Pg.319]

Potassium ions are pumped in sodium ions are pumped out. [Pg.454]


See other pages where Sodium-potassium ion pump is mentioned: [Pg.235]    [Pg.132]    [Pg.180]    [Pg.231]    [Pg.757]    [Pg.545]    [Pg.17]    [Pg.235]    [Pg.132]    [Pg.180]    [Pg.231]    [Pg.757]    [Pg.545]    [Pg.17]    [Pg.109]    [Pg.189]    [Pg.94]    [Pg.163]    [Pg.10]    [Pg.909]    [Pg.218]    [Pg.10]    [Pg.32]    [Pg.358]    [Pg.124]    [Pg.536]    [Pg.175]    [Pg.237]    [Pg.188]    [Pg.67]    [Pg.318]    [Pg.16]    [Pg.174]    [Pg.716]   
See also in sourсe #XX -- [ Pg.218 , Pg.218 ]




SEARCH



Ion pumping

Ion pumps

Potassium ions

Potassium sodium

Sodium ion

Sodium pump

Sodium pumping

Sodium-potassium pump

© 2024 chempedia.info