Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Slater determinants electron correlation methods

There are two ways to improve the accuracy in order to obtain solutions to almost any degree of accuracy. The first is via the so-called self-consistent field-Hartree-Fock (SCF-HF) method, which is a method based on the variational principle that gives the optimal one-electron wave functions of the Slater determinant. Electron correlation is, however, still neglected (due to the assumed product of one-electron wave functions). In order to obtain highly accurate results, this approximation must also be eliminated.6 This is done via the so-called configuration interaction (Cl) method. The Cl method is again a variational calculation that involves several Slater determinants. [Pg.47]

The HF method determines the best one-determinant trial wave function (within the given basis set). It is therefore clear that in order to improve on HF results, the starting point must be a trial wave function which contains more than one Slater Determinant (SD). This also means that the mental picture of electrons residing in orbitals has to be abandoned, and the more fundamental property, the electron density, should be considered. As the HF solution usually gives 99% of the correct answer, electron correlation methods normally use the HF wave function as a starting point for improvements. [Pg.99]

All electron correlation methods based on expanding the Ai-electron wave function in terms of Slater determinants built from orbitals (one-electron functions) suffer from am... [Pg.140]

Prior to this, it had already been established that even the simplest forms of DFT, based on the exchange-only Slater or Xa scheme, could give good descriptions of the electronic structure of metal complexes and a number of contemporary applications confirmed this. However, in combination with structure optimization, here at last was a quantum chemical method accurate enough for transition metal (TM) systems and yet still efficient enough to deliver results in a reasonable time. This was in stark contrast to the competition which was either based on the single-determinant Hartree-Fock approximation, which had been discredited as a viable theory for TM systems,or on more sophisticated electron correlation methods (e.g., second order Moller-Plesset theory) which are relatively computationally expensive and thus, for the same computer time, treat much smaller systems that DFT. [Pg.644]

The parameterization of MNDO/AM1/PM3 is performed by adjusting the constants involved in the different methods so that the results of HF calculations fit experimental data as closely as possible. This is in a sense wrong. We know that the HF method cannot give the correct result, even in the limit of an infinite basis set and without approximations. The HF results lack electron correlation, as will be discussed in Chapter 4, but the experimental data of course include such effects. This may be viewed as an advantage, the electron correlation effects are implicitly taken into account in the parameterization, and we need not perform complicated calculations to improve deficiencies in fhe HF procedure. However, it becomes problematic when the HF wave function cannot describe the system even qualitatively correctly, as for example with biradicals and excited states. Additional flexibility can be introduced in the trial wave function by adding more Slater determinants, for example by means of a Cl procedure (see Chapter 4 for details). But electron cori elation is then taken into account twice, once in the parameterization at the HF level, and once explicitly by the Cl calculation. [Pg.95]

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

The total wavefunction, , is an antisymmetrized product of the one-electron functions i/q (a Slater determinant). The i/tj are called one-electron functions since they depend on the coordinates of only one electron this approximation is embedded in all MO methods. The effects that are missing when this approximation is used go under the general name of electron correlation. [Pg.12]

In principle, the deficiencies of HF theory can be overcome by so-called correlated wavefunction or post-HF methods. In the majority of the available methods, the wavefunction is expanded in terms of many Slater-determinants instead of just one. One systematic recipe to choose such determinants is to perform single-, double-, triple-, etc. substitutions of occupied HF orbitals by virtual orbitals. Pictorially speaking, the electron correlation is implemented in this way by allowing the electrons to jump out of the HF sea into the virtual space in order... [Pg.145]

Most of the commonly used electronic-structure methods are based upon Hartree-Fock theory, with electron correlation sometimes included in various ways (Slater, 1974). Typically one begins with a many-electron wave function comprised of one or several Slater determinants and takes the one-electron wave functions to be molecular orbitals (MO s) in the form of linear combinations of atomic orbitals (LCAO s) (An alternative approach, the generalized valence-bond method (see, for example, Schultz and Messmer, 1986), has been used in a few cases but has not been widely applied to defect problems.)... [Pg.531]

The difference between the Hartree-Fock energy and the exact solution of the Schrodinger equation (Figure 60), the so-called correlation energy, can be calculated approximately within the Hartree-Fock theory by the configuration interaction method (Cl) or by a perturbation theoretical approach (Mpller-Plesset perturbation calculation wth order, MPn). Within a Cl calculation the wave function is composed of a linear combination of different Slater determinants. Excited-state Slater determinants are then generated by exciting electrons from the filled SCF orbitals to the virtual ones ... [Pg.588]

The treatment of systems where non-dynamic correlation is critical is quite more complicated from a methodological point of view. As mentioned above, non-dynamic correlation is associated to the presence of neardegeneracies in the electronic ground state of the system, which means that there are Slater determinants with a weight similar to that of the HF solution in equation 4. The problem of non-dynamic correlation is usually treated successfully by the CASSCF method [43] for organic systems. This method introduces with high accuracy the correlation in the orbitals involved in the near degeneracy, which constitute the so called active space. The problem in... [Pg.9]

Establishing a hierarchy of rapidly converging, generally applicable, systematic approximations of exact electronic wave functions is the holy grail of electronic structure theory [1]. The basis of these approximations is the Hartree-Fock (HF) method, which defines a simple noncorrelated reference wave function consisting of a single Slater determinant (an antisymmetrized product of orbitals). To introduce electron correlation into the description, the wave function is expanded as a combination of the reference and excited Slater determinants obtained by promotion of one, two, or more electrons into vacant virtual orbitals. The approximate wave functions thus defined are characterized by the manner of the expansion (linear, nonlinear), the maximum excitation rank, and by the size of one-electron basis used to represent the orbitals. [Pg.132]

Another class of methods uses more than one Slater determinant as the reference wave function. The methods used to describe electron correlation within these calculations are similar in some ways to the methods listed above. These methods include multiconfigurational self-consistent field (MCSCF), multireference single and double configuration interaction (MRDCI), and /V-clcctron valence state perturbation theory (NEVPT) methods.5... [Pg.24]


See other pages where Slater determinants electron correlation methods is mentioned: [Pg.140]    [Pg.175]    [Pg.291]    [Pg.382]    [Pg.1066]    [Pg.179]    [Pg.181]    [Pg.157]    [Pg.382]    [Pg.78]    [Pg.58]    [Pg.142]    [Pg.187]    [Pg.195]    [Pg.201]    [Pg.148]    [Pg.290]    [Pg.80]    [Pg.155]    [Pg.164]    [Pg.9]    [Pg.382]    [Pg.474]    [Pg.90]    [Pg.91]    [Pg.50]    [Pg.21]    [Pg.24]    [Pg.52]    [Pg.460]    [Pg.229]    [Pg.215]   
See also in sourсe #XX -- [ Pg.139 , Pg.145 , Pg.178 ]




SEARCH



Correlated electrons

Correlation electron

Correlation methods

Correlative methods

Electron Methods

Electron correlation Slater determinant

Electron correlation methods

Electronic correlations

Slater

Slater determinants

Slater determination

Slater method

© 2024 chempedia.info