Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Situation space

Different technical tools fit different events, and not all of them are useful in any particular situation. Space does not allow us to discuss each of these tools in... [Pg.248]

Attitude Space, Socio-Configuration and Situation Space... [Pg.55]

After the definition of quantitative measures = 1,2,..., 5) for the state of S aspects of the material situation, an 5-dimensional situation space can be introduced and the situation can be described formally by the situation vector ... [Pg.57]

In the converse situation free of gravity, a drop assumes a perfectly spherical shape. At one point, the U.S. Space program tested this idea with the solidification of ball bearings from molten metal drops in microgravity conditions. [Pg.32]

In this brief review of dynamics in condensed phases, we have considered dense systems in various situations. First, we considered systems in equilibrium and gave an overview of how the space-time correlations, arising from the themial fluctuations of slowly varying physical variables like density, can be computed and experimentally probed. We also considered capillary waves in an inliomogeneous system with a planar interface for two cases an equilibrium system and a NESS system under a small temperature gradient. [Pg.756]

A situation that arises from the intramolecular dynamics of A and completely distinct from apparent non-RRKM behaviour is intrinsic non-RRKM behaviour [9], By this, it is meant that A has a non-random P(t) even if the internal vibrational states of A are prepared randomly. This situation arises when transitions between individual molecular vibrational/rotational states are slower than transitions leading to products. As a result, the vibrational states do not have equal dissociation probabilities. In tenns of classical phase space dynamics, slow transitions between the states occur when the reactant phase space is metrically decomposable [13,14] on the timescale of the imimolecular reaction and there is at least one bottleneck [9] in the molecular phase space other than the one defining the transition state. An intrinsic non-RRKM molecule decays non-exponentially with a time-dependent unimolecular rate constant or exponentially with a rate constant different from that of RRKM theory. [Pg.1011]

As we have seen, the sub-Hilbert spaces are defined for the whole configuration space and this requirement could lead, in certain cases, to situations where it will be necessary to include the complete Hilbert space. However, it frequently happens that the dynamics we intend to study takes place in a given, isolated, region that contains only part of the conical intersection points and the question is whether the effects of the other conical intersections can be ignored ... [Pg.664]

The spin in quantum mechanics was introduced because experiments indicated that individual particles are not completely identified in terms of their three spatial coordinates [87]. Here we encounter, to some extent, a similar situation A system of items (i.e., distributions of electrons) in a given point in configuration space is usually described in terms of its set of eigenfunctions. This description is incomplete because the existence of conical intersections causes the electronic manifold to be multivalued. For example, in case of two (isolated) conical intersections we may encounter at a given point m configuration space four different sets of eigenfunctions (see Section Vni). [Pg.667]

According to Section VI, the size M of the sub-Hilbert space is determined whether the respective M states form an isolated set of states fulfilling Eqs. (91). In this case, diabatization is always valid for this subsystem. However, it can happen that under certain geometrical situations the size of the sub-Hilbert space for which diabatization is valid is even smaller than this particular M... [Pg.679]

The problems already mentioned at the solvent/vacuum boundary, which always exists regardless of the size of the box of water molecules, led to the definition of so-called periodic boundaries. They can be compared with the unit cell definition of a crystalline system. The unit cell also forms an "endless system without boundaries" when repeated in the three directions of space. Unfortunately, when simulating hquids the situation is not as simple as for a regular crystal, because molecules can diffuse and are in principle able to leave the unit cell. [Pg.366]

For each combination of atoms i.j, k, and I, c is defined by Eq. (29), where X , y,. and Zj are the coordinates of atom j in Cartesian space defined in such a way that atom i is at position (0, 0, 0), atomj lies on the positive side of the x-axis, and atom k lies on the xy-plaiic and has a positive y-coordinate. On the right-hand side of Eq. (29), the numerator represents the volume of a rectangular prism with edges % , y ., and Zi, while the denominator is proportional to the surface of the same solid. If X . y ., or 2 has a very small absolute value, the set of four atoms is deviating only slightly from an achiral situation. This is reflected in c, which would then take a small absolute value the value of c is conformation-dependent because it is a function of the 3D atomic coordinates. [Pg.424]

The reasons for this lack of work are manifold The problem is quite complex and difficult to tackle. The information in reaction databases is inherently biased only known reactions, no reactions that failed, are stored. However, any learning also needs information on situations where a certain event will not happen or will fad. The quality of information stored in reaction databases often leaves something to be desired reaction equations are incomplete, certain detads on a reaction are often incomplete or missing, the coverage of the reaction space is not homogeneous, etc. Nevertheless, the challenge is there and the merits of success should be great ... [Pg.544]

Finally, 3D pharmacophores can be used to provide a naturally partitioned space. By com bining the pharmacophore keys of a set of molecules one can determine how many of th potential 3- or 4- point pharmacophores are accessible to the set and easily identify thos which are not represented. This use of pharmacophores is the basis of a method namei Pharmacophore-Derived Queries (PDQ) [Pickett et al. 1996]. One feature of this particula method is that most molecules will occupy more than one cell (as nearly all molecules wil contain more than one 3-point pharmacophore due to the functionality present an( conformational flexibility). This contrasts with the usual situation, wherein each molecul occupies just one cell. [Pg.703]

Factorial design methods cannot always be applied to QSAR-type studies. For example, i may not be practically possible to make any compounds at all with certain combination of factor values (in contrast to the situation where the factojs are physical properties sucl as temperature or pH, which can be easily varied). Under these circumstances, one woul( like to know which compounds from those that are available should be chosen to give well-balanced set with a wide spread of values in the variable space. D-optimal design i one technique that can be used for such a selection. This technique chooses subsets o... [Pg.713]

Discriminant emalysis is a supervised learning technique which uses classified dependent data. Here, the dependent data (y values) are not on a continuous scale but are divided into distinct classes. There are often just two classes (e.g. active/inactive soluble/not soluble yes/no), but more than two is also possible (e.g. high/medium/low 1/2/3/4). The simplest situation involves two variables and two classes, and the aim is to find a straight line that best separates the data into its classes (Figure 12.37). With more than two variables, the line becomes a hyperplane in the multidimensional variable space. Discriminant analysis is characterised by a discriminant function, which in the particular case of hnear discriminant analysis (the most popular variant) is written as a linear combination of the independent variables ... [Pg.719]


See other pages where Situation space is mentioned: [Pg.148]    [Pg.682]    [Pg.690]    [Pg.148]    [Pg.148]    [Pg.682]    [Pg.690]    [Pg.148]    [Pg.579]    [Pg.621]    [Pg.51]    [Pg.1031]    [Pg.1502]    [Pg.1647]    [Pg.1808]    [Pg.1946]    [Pg.2589]    [Pg.8]    [Pg.40]    [Pg.65]    [Pg.98]    [Pg.98]    [Pg.124]    [Pg.451]    [Pg.639]    [Pg.730]    [Pg.54]    [Pg.107]    [Pg.419]    [Pg.243]    [Pg.243]    [Pg.55]    [Pg.171]    [Pg.172]    [Pg.334]    [Pg.448]    [Pg.136]   
See also in sourсe #XX -- [ Pg.55 , Pg.57 ]




SEARCH



Situation

Situational

© 2024 chempedia.info