Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semi-empirical prediction

The above discussion has tacitly assumed that it is only molecular interactions which lead to adhesion, and these have been assumed to occur across relatively smooth interfaces between materials in intimate contact. As described in typical textbooks, however, there are a number of disparate mechanisms that may be responsible for adhesion [9-11,32]. The list includes (1) the adsorption mechanism (2) the diffusion mechanism (3) the mechanical interlocking mechanism and (4) the electrostatic mechanism. These are pictured schematically in Fig. 6 and described briefly below, because the various semi-empirical prediction schemes apply differently depending on which mechanisms are relevant in a given case. Any given real case often entails a combination of mechanisms. [Pg.11]

A method of calculating D in a binary mixture of gases is given later (equation 10.43). For liquids, the molecular structure is far more complex and no such simple relationship exisls, although various semi-empirical predictive methods, such as equation 10.96, are useful. [Pg.575]

Polarizabilities and hyperpolarizabilities have been calculated with semi-empirical, ah initio, and DFT methods. The general conclusion from these studies is that a high level of theory is necessary to correctly predict nonlinear optical properties. [Pg.259]

Eor transition metals the splitting of the d orbitals in a ligand field is most readily done using EHT. In all other semi-empirical methods, the orbital energies depend on the electron occupation. HyperChem s molecular orbital calculations give orbital energy spacings that differ from simple crystal field theory predictions. The total molecular wavefunction is an antisymmetrized product of the occupied molecular orbitals. The virtual set of orbitals are the residue of SCE calculations, in that they are deemed least suitable to describe the molecular wavefunction. [Pg.148]

Many problems with MNDO involve cases where the NDO approximation electron-electron repulsion is most important. AMI is an improvement over MNDO, even though it uses the same basic approximation. It is generally the most accurate semi-empirical method in HyperChem and is the method of choice for most problems. Altering part of the theoretical framework (the function describing repulsion between atomic cores) and assigning new parameters improves the performance of AMI. It deals with hydrogen bonds properly, produces accurate predictions of activation barriers for many reactions, and predicts heats of formation of molecules with an error that is about 40 percent smaller than with MNDO. [Pg.150]

The results of electrostatic potential calculations can be used to predict initial attack positions of protons (or other ions) during a reaction. You can use the Contour Plot dialog box to request a plot of the contour map of the electrostatic potential of a molecular system after you done a semi-empirical or ab initio calculation. By definition, the electrostatic potential is calculated using the following expression ... [Pg.244]

Inspection of Fig. 3.9 suggests that for polyisobutylene at 25°C, Ti is about lO hr. Use Eq. (3.101) to estimate the viscosity of this polymer, remembering that M = 1.56 X 10. As a check on the value obtained, use the Debye viscosity equation, as modified here, to evaluate M., the threshold for entanglements, if it is known that f = 4.47 X 10 kg sec at this temperature. Both the Debye theory and the Rouse theory assume the absence of entanglements. As a semi-empirical correction, multiply f by (M/M. ) to account for entanglements. Since the Debye equation predicts a first-power dependence of r) on M, inclusion of this factor brings the total dependence of 77 on M to the 3.4 power as observed. [Pg.190]

A.ssessmentofUNIFy C. UNIFAC is a method to predict the activity of binary Hquid solutions in the absence of all data except stmctural information. Because state-of-the-art real fluid estimation methods are empirical or semi-empirical, the use of more data results in improved activity estimation. [Pg.252]


See other pages where Semi-empirical prediction is mentioned: [Pg.148]    [Pg.13]    [Pg.412]    [Pg.107]    [Pg.148]    [Pg.13]    [Pg.412]    [Pg.107]    [Pg.152]    [Pg.150]    [Pg.11]    [Pg.112]    [Pg.119]    [Pg.248]    [Pg.309]    [Pg.4]    [Pg.133]    [Pg.220]    [Pg.1]    [Pg.1]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.47]    [Pg.51]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Semi-empirical

© 2024 chempedia.info