Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-consistent reaction field SCRF

If the species is charged then an appropriate Born term must also be added. The react field model can be incorporated into quantum mechanics, where it is commonly refer to as the self-consistent reaction field (SCRF) method, by considering the reaction field to a perturbation of the Hamiltonian for an isolated molecule. The modified Hamiltoniar the system is then given by ... [Pg.611]

One femily of models for systems in non-aqueous solution are referred to as Self-Consistent Reaction Field (SCRF) methods. These methods all model the solvent as a continuum of uniform dielectric constant e the reaction field. The solute is placed into a cavity within the solvent. SCRF approachs differ in how they define the cavity and the reaction field. Several are illustrated below. [Pg.237]

The Self-Consistent Reaction Field (SCRF) model considers the solvent as a uniform polarizable medium with a dielectric constant of s, with the solute M placed in a suitable shaped hole in the medium. Creation of a cavity in the medium costs energy, i.e. this is a destabilization, while dispersion interactions between the solvent and solute add a stabilization (this is roughly the van der Waals energy between solvent and solute). The electric charge distribution of M will furthermore polarize the medium (induce charge moments), which in turn acts back on the molecule, thereby producing an electrostatic stabilization. The solvation (free) energy may thus be written as... [Pg.393]

Shukla and coworkers have studied the excited states of purine bases, adenine and guanine, in water using CIS with the self-consistent reaction field (SCRF) to model the water [217,218], Tomasi and coworkers have also studied the purine bases... [Pg.321]

Conceptually, the self-consistent reaction field (SCRF) model is the simplest method for inclusion of environment implicitly in the semi-empirical Hamiltonian24, and has been the subject of several detailed reviews24,25,66. In SCRF calculations, the QM system of interest (solute) is placed into a cavity within a polarizable medium of dielectric constant e (Fig. 2.2). For ease of computation, the cavity is assumed to be spherical and have a radius ro, although expressions similar to those outlined below have been developed for ellipsoidal cavities67. Using ideas from classical electrostatics, we can show that the interaction potential can be expressed as a function of the charge and multipole moments of the solute. For ease... [Pg.26]

Fig. 2.2 Self-Consistent Reaction Field (SCRF) model for the inclusion of solvent effects in semi-empirical calculations. The solvent is represented as an isotropic, polarizable continuum of macroscopic dielectric e. The solute occupies a spherical cavity of radius ru, and has a dipole moment of p,o. The molecular dipole induces an opposing dipole in the solvent medium, the magnitude of which is dependent on e. Fig. 2.2 Self-Consistent Reaction Field (SCRF) model for the inclusion of solvent effects in semi-empirical calculations. The solvent is represented as an isotropic, polarizable continuum of macroscopic dielectric e. The solute occupies a spherical cavity of radius ru, and has a dipole moment of p,o. The molecular dipole induces an opposing dipole in the solvent medium, the magnitude of which is dependent on e.
The most common approach to solvation studies using an implicit solvent is to add a self-consistent reaction field (SCRF) term to an ab initio (or semi-empirical) calculation. One of the problems with SCRF methods is the number of different possible approaches. Orozco and Luque28 and Colominas et al27 found that 6-31G ab initio calculations with the polarizable continuum model (PCM) method of Miertius, Scrocco, and Tomasi (referred to in these papers as the MST method)45 gave results in reasonable agreement with the MD-FEP results, but the AM1-AMSOL method differed by a number of kJ/mol, and sometimes gave qualitatively wrong results. [Pg.136]

Abstract This chapter reviews the theoretical background for continuum models of solvation, recent advances in their implementation, and illustrative examples of their use. Continuum models are the most efficient way to include condensed-phase effects into quantum mechanical calculations, and this is typically accomplished by the using self-consistent reaction field (SCRF) approach for the electrostatic component. This approach does not automatically include the non-electrostatic component of solvation, and we review various approaches for including that aspect. The performance of various models is compared for a number of applications, with emphasis on heterocyclic tautomeric equilibria because they have been the subject of the widest variety of studies. For nonequilibrium applications, e.g., dynamics and spectroscopy, one must consider the various time scales of the solvation process and the dynamical process under consideration, and the final section of the review discusses these issues. [Pg.1]

The second term of equation (33) may be called the self-consistent reaction field (SCRF) equation in that eq. (30) must be solved iteratively until the... [Pg.10]

Equations (1)- (4) have been generalized to molecules [2,3,10-13], in the context of the self consistent reaction field (SCRF) theory [14],... [Pg.82]

Equation (96) shows that the effective KS potential may be simply obtained by adding to the standard KS potential of the isolated solute, an electrostatic correction which turns out to be the RE potential Or, and the exchange- correlation correction 8vxc. It is worth mentioning here, that Eq (96) is formally equivalent to the effective Fock operator correction bfteffi defined in the context of the self consistent reaction field (SCRF) theory [2,3,14] within the HF theory, the exchange contribution is exactly self-contained in Or, whereas correlation effects are completely neglected. As a result, within the HF theory 8v = Or, as expected. [Pg.115]

THE SELF CONSISTENT REACTION FIELD, SCRF, METHOD... [Pg.190]

Self-consistent reaction field (SCRF) models are the most efficient way to include condensed-phase effects into quantum mechanical calculations [8-11]. This is accomplished by using SCRF approach for the electrostatic component. By design, it considers only one physical effect accompanying the insertion of a solute in a solvent, namely, the bulk polarization of the solvent by the mean field of the solute. This approach efficiently takes into account the long range solute-solvent electrostatic interaction and effect of solvent polarization. However, by design, this model cannot describe local solute-solvent interactions. [Pg.384]

These workers also calculated the relative stability of the tautomers lOa-c in the gas phase by ab initio and density functional theory (DFT) methods and in solution using several continuum solvation models such as self-consistent reaction fields (SCRF) and the Poisson-Boltzmann method. These results showed good agreement between the experimental and theoretical approaches. [Pg.849]

Continuum solvation models consider the solvent as a homogeneous, isotropic, linear dielectric medium [104], The solute is considered to occupy a cavity in this medium. The ability of a bulk dielectric medium to be polarized and hence to exert an electric field back on the solute (this field is called the reaction field) is determined by the dielectric constant. The dielectric constant depends on the frequency of the applied field, and for equilibrium solvation we use the static dielectric constant that corresponds to a slowly changing field. In order to obtain accurate results, the solute charge distribution should be optimized in the presence of the field (the reaction field) exerted back on the solute by the dielectric medium. This is usually done by a quantum mechanical molecular orbital calculation called a self-consistent reaction field (SCRF) calculation, which is iterative since the reaction field depends on the distortion of the solute wave function and vice versa. While the assumption of linear homogeneous response is adequate for the solvent molecules at distant positions, it is a poor representation for the solute-solvent interaction in the first solvation shell. In this case, the solute sees the atomic-scale charge distribution of the solvent molecules and polarizes nonlinearly and system specifically on an atomic scale (see Figure 3.9). More generally, one could say that the breakdown of the linear response approximation is connected with the fact that the liquid medium is structured [105],... [Pg.348]

Hamiltonian and determined by a self-consistent reaction field (SCRF) procedure. [Pg.256]

The details on the operators introduced in the two schemes will be given below, here we only want to add that the addition of Henv to the solute Hamiltonian automatically leads to a modification of the solute wavefunction which has now to be determined by solving the effective Eq. (1-1). This can be done using exactly the same methods used for isolated molecules here in particular we shall mainly focus on the standard self-consistent field (SCF) approach (either in its Hartree-Fock or DFT formulation). Due to the presence of Hem the modified SCF scheme is generally known as self-consistent reaction field (SCRF). Historically the term SCRF has been coined for the QM/continuum approach but here, due the parallelism between the two schemes which will be made clear in the following sections, it will be used indistinctly for both. [Pg.4]


See other pages where Self-consistent reaction field SCRF is mentioned: [Pg.838]    [Pg.20]    [Pg.189]    [Pg.203]    [Pg.36]    [Pg.80]    [Pg.87]    [Pg.145]    [Pg.178]    [Pg.686]    [Pg.533]    [Pg.397]    [Pg.535]    [Pg.1383]    [Pg.162]    [Pg.189]    [Pg.13]    [Pg.527]    [Pg.422]    [Pg.104]    [Pg.408]   
See also in sourсe #XX -- [ Pg.13 , Pg.16 , Pg.22 , Pg.25 ]




SEARCH



Reaction field

SCRF

Self consistent reaction field model SCRF)

Self-Consistent Field

Self-consistent reaction field model quantum mechanical SCRF models

Self-consisting fields

© 2024 chempedia.info