Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenonium ylides reactivity

Syntheses of Alkylidene cyclopropanes Via the Selenonium route The selenonium route proved to be more valuable. It has been specifically designed by us to replace the deficient selenoxide route (Scheme 38). It was expected to produce alkylidene cyclopropanes by a mechanism which mimics the selenoxide elimination step but which involves a selenonium ylide in which a carbanion has replaced the oxide. Cyclopropyl selenides are readily transformed to the corresponding selenonium salts on reaction with methyl fluorosulfonate or methyl iodide in the presence of silver tetrafluoroborate in dichloromethane at 20 °C and, as expected, methylseleno derivatives are more reactive than phenyl-seleno analogs. Alkylidene cyclopropanes are, in turn, smoothly prepared on reaction of the selenium salts at 20 °C with potassium tert-butoxide in THF (Scheme 38). Mainly alkyl cyclopropenes form at the beginning of the reaction. They then slowly rearranges, in the basic medium, to the more stable alkylidene cyclopropanes( 6 kcal/mol). In some cases the complete isomerisation requires treatment of the mixture formed in the above reaction with potassium fcrt-butoxide in THF. The reaction seems to occur via a selenonium ylide rather than via a P-elimina-tion reaction promoted by the direct attack of the /crt-butoxide anion on the P-hydrogen of the selenonium salt, since it has been shown in a separate experiment that the reaction does not occur when a diphenylselenonium salt (imable to produce the expected intermediate) is used instead of the phenyl-methyl or dimethyl selenonium analogs. It has also been found that the elimination reaction is the slow step in the process, since styrene oxide is formed if the reaction is performed in the presence of benzaldehyde which traps the ylide intermediately formed... [Pg.31]

When compared with phosphonium and sulfonium ylides, the corresponding selenonium and telluronium ylides frequently exhibit better reactivity and nucle-ophilicity, while the use of selenides and tellurides in catalytic ylide reactions is far less reported. In 2001, Metzner and coworkers reported an asymmetric epoxi-dation reaction of aldehydes using a C2-symmetric selenide 42 resembling their sulfide catalyst (Scheme 20.32). High yields (65-97%) and enantioselecti vity (76-94% ee) were obtained with a range of aromatic aldehydes and dnnamalde-hydes. However, no diastereoselectivity (trans cis = 1 1) was observed in these reactions, while the corresponding sulfide gave around 80% diastereoselectivities, which could be rationalized as the formation of a less diastereoselective early transition state with the more reactive selenonium ylides. The reactions of more electron-deficient aryl aldehydes (p-Cl and p-CFs) were less enantioselective (76% ee and 83% ee, respectively) [58]. [Pg.573]


See other pages where Selenonium ylides reactivity is mentioned: [Pg.31]    [Pg.31]   


SEARCH



Reactivity ylides

Selenonium

Selenonium ylides

© 2024 chempedia.info