Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity selective partitioning approach

The most popular method for measuring the polarity of a solute entails determination of the distribution constant between water and a water-immiscible solvent, e.g., octanol. However, because there is difficulty in dissolving proteins in the solvent, a two-phase aqueous system was developed (Shanbhag and Axelson, 1975). Albertson (1986) reported the construction of various aqueous phase systems for partitioning proteins, other macromolecules, and even cells. Recently, simpler aqueous biphase systems were selected for hydrophobic partitioning of proteins (Hachem et al., 1996). However, because of restrictions similar to those for HIC, as discussed above, it may be premature to replace the method used in Basic Protocol 5. The definition of hydrophobicity is based on the polarity of chemical compounds, which is closely related to the distribution between solvents of different polarities. This theory is similar to the elution mechanism of phase distribution chromatography as well as phase partition. However, complexity in the partition system and procedure hampers the broad use of the phase partition approaches. [Pg.310]

For resorcinolic lipids, particularly those with long saturated side-chains, the use of polar solvents is important due to their amphiphilicity. The crude extracts in many cases are subjected to preliminary fractionation/purification either by solvent fractionation/partition or by application of chromatography. For prepurification of the material and its separation from polymerized phenolics, gel filtration on hydrophobic Sephadex or TSK gel is sometimes used. Silica gel is most frequently employed for the separation and/or purification of resorcinolic lipids, notably in some studies with Ononis species (12-14). The array of compounds reported appears partly attributable to methylation or acetylation reactions occurring during column chromatographic separation. An interesting approach for I the pre-purification and selective separation of resorcinolic lipid from phenolic lipids or resorcinolic lipids from impurities has recently been reported. A selective partitioning of different non-isoprenoid phenolic lipids... [Pg.53]

A major potential drawback with cluster analysis and dissimilarity-based methods f selecting diverse compounds is that there is no easy way to quantify how completel one has filled the available chemical space or to identify whether there are any hole This is a key advantage of the partition-based approaches (also known, as cell-bas( methods). A number of axes are defined, each corresponding to a descriptor or son combination of descriptors. Each axis is divided into a number of bins. If there are axes and each is divided into b bins then the number of cells in the multidimension space so created is ... [Pg.701]

Another approach to assess the partitioning of metals among the phases comprising natural particulate matter is to sequentially and selectively extract or dissolve portions of natural particulate matter. Based on the release of trace metals accompanying each step, associations between the trace metal and the extracted phase are inferred. Both of the above approaches have drawbacks, and at this time it is impossible to predict in advance how and to what extent metals and particulate matter will bond to one another in a natural system. Despite the uncertainties, empirical results can often be interpreted using the framework provided here. [Pg.394]

In the following, the MO applications will be demonstrated with two selected equilibrium reactions, most important in radical chemistry disproportionation and dimerization. The examples presented will concern MO approaches of different levels of sophistication ab initio calculations with the evaluation of partition functions, semiempirical treatments, and simple procedures employing the HMO method or perturbation theory. [Pg.363]

Partition-based modeling methods are also called subset selection methods because they select a smaller subset of the most relevant inputs. The resulting model is often physically interpretable because the model is developed by explicitly selecting the input variable that is most relevant to approximating the output. This approach works best when the variables are independent (De Veaux et al., 1993). The variables selected by these methods can be used as the analyzed inputs for the interpretation step. [Pg.41]


See other pages where Selectivity selective partitioning approach is mentioned: [Pg.45]    [Pg.70]    [Pg.304]    [Pg.279]    [Pg.291]    [Pg.292]    [Pg.294]    [Pg.1031]    [Pg.206]    [Pg.387]    [Pg.243]    [Pg.228]    [Pg.477]    [Pg.513]    [Pg.514]    [Pg.376]    [Pg.622]    [Pg.22]    [Pg.23]    [Pg.303]    [Pg.340]    [Pg.1289]    [Pg.1289]    [Pg.2256]    [Pg.246]    [Pg.582]    [Pg.525]    [Pg.119]    [Pg.70]    [Pg.363]    [Pg.366]    [Pg.366]    [Pg.518]    [Pg.29]    [Pg.100]    [Pg.104]    [Pg.624]    [Pg.195]    [Pg.130]    [Pg.5]    [Pg.544]    [Pg.152]    [Pg.301]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Partitioning selectivity

Selection approach

Selective approach

© 2024 chempedia.info