Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Section surfaces, nonadiabatic quantum

The mapping approach outlined above has been designed to furnish a well-defined classical limit of nonadiabatic quantum dynamics. The formalism applies in the same way at the quantum-mechanical, semiclassical (see Section VIII), and quasiclassical level, respectively. Most important, no additional assumptions but the standard semiclassical and quasi-classical approximations are needed to get from one level to another. Most of the established mixed quantum-classical methods such as the mean-field-trajectory method or the surface-hopping approach do invoke additional assumptions. The comparison of the mapping approach to these formulations may therefore (i) provide insight into the nature of these additional approximation and (ii) indicate whether the conceptual virtues of the mapping approach may be expected to result in practical advantages. [Pg.308]

Because the mapping approach treats electronic and nuclear dynamics on the same dynamical footing, its classical limit can be employed to study the phase-space properties of a nonadiabatic system. With this end in mind, we adopt a onemode two-state spin-boson system (Model IVa), which is mapped on a classical system with two degrees of freedom (DoF). Studying various Poincare surfaces of section, a detailed phase-space analysis of the problem is given, showing that the model exhibits mixed classical dynamics [123]. Furthermore, a number of periodic orbits (i.e., solutions of the classical equation of motion that return to their initial conditions) of the nonadiabatic system are identified and discussed [125]. It is shown that these vibronic periodic orbits can be used to analyze the nonadiabatic quantum dynamics [126]. Finally, a three-mode model of nonadiabatic photoisomerization (Model III) is employed to demonstrate the applicability of the concept of vibronic periodic orbits to multidimensional dynamics [127]. [Pg.326]

PESs, and (iv) obey the principle of microreversibility. Section 3 describes in some detail the mean-field trajectory method and also discusses its connection to time-dependent self-consistent-field schemes. The surface-hopping method is considered in Sec. 4, which discusses various motivations of the ansatz as well as several variants of the implementation. Section 5 gives a brief account on the quantum-classical Liouville description and considers the possibility of an exact stochastic realization of its equation of motion. The mapping formalism, its relation to other formulations, and its quasi-classical implementation is introduced in Sec. 6. Section 7 is concerned with the semiclassical description of nonadiabatic quantum mechanics. Section 8 summarizes our results and concludes with some general remarks. [Pg.626]

Before moving into the next section, we would like to briefly cover the subject of diabatic potential energy surfaces (or diabatic potential matrix), since they are important and indispensable when carrying out nonadiabatic quantum calculations for tri-atomic and tetra-atomic reactions. [Pg.216]

The main practical problem in the implementation of the mixed quantum-classical dynamics method described in Section 4.2.4 is the nonlocal nature of the force in the equation of motion for the stationary-phase trajectories (Equation 4.29). Surface hopping methods provide an approximate, intuitive, stochastic alternative approach that uses the average dynamics of swarm of trajectories over the coupled surfaces to approximate the behavior of the nonlocal stationary-phase trajectory. The siu--face hopping method of Tully and Preston and Tully describes nonadiabatic dynamics even for systems with many particles. Commonly, the nuclei are treated classically, but it is important to consider a large niunber of trajectories in order to sample the quantum probability distribution in the phase space and, if necessary, a statistical distribution over states. In each of the many independent trajectories, the system evolves from the initial configuration for the time necessary for the description of the event of interest. The integration of a trajec-... [Pg.184]

In the following sections we show how the quantum-classical Liouville equation and quantum-classical expressions for reaction rates can be deduced from the full quantum expressions. The formalism is then applied to the investigation of nonadiabatic proton transfer reactions in condensed phase polar solvents. A quantum-classical Liouville-based method for calculating linear and nonlinear vibrational spectra is then described, which involves nonequilibrium dynamics on multiple adiabatic potential energy surfaces. This method is then used to investigate the linear and third-order vibrational spectroscopy of a proton stretching mode in a solvated hydrogen-bonded complex. [Pg.254]


See other pages where Section surfaces, nonadiabatic quantum is mentioned: [Pg.76]    [Pg.202]    [Pg.1068]    [Pg.195]    [Pg.459]    [Pg.480]    [Pg.325]    [Pg.364]    [Pg.419]    [Pg.922]    [Pg.226]    [Pg.93]    [Pg.2]    [Pg.166]    [Pg.21]    [Pg.331]   


SEARCH



Section surface

© 2024 chempedia.info