Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary relaxation processes coefficient

X-ray scattering studies at a renewed pc-Ag/electrolyte interface366,823 provide evidence for assuming that fast relaxation and diffu-sional processes are probable at a renewed Sn + Pb alloy surface. Investigations by secondary-ion mass spectroscopy (SIMS) of the Pb concentration profile in a thin Sn + Pb alloy surface layer show that the concentration penetration depth in the solid phase is on the order of 0.2 pm, which leads to an estimate of a surface diffusion coefficient for Pb atoms in the Sn + Pb alloy surface layer on the order of 10"13 to lCT12 cm2 s i 820 ( p,emicai analysis by electron spectroscopy for chemical analysis (ESCA) and Auger ofjust-renewed Sn + Pb alloy surfaces in a vacuum confirms that enrichment with Pb of the surface layer is probable.810... [Pg.144]

In concentrated systems obtained in a thin uniform shape, the simplest way to record X-ray absorption data is the transmission mode in which the incident and transmitted photons are directly measured by means of ionisation chambers. However, in dilute systems or for surface characterisations, data are usually recorded using secondary effects resulting from the creation of the core hole during the absorption process and from its subsequent relaxation by radiative or non-radiative decays. These processes are the X-ray fluorescence emission and the total electron yield (TEY) emission, respectively. In these detection modes, the linear absorption coefficient is proportional to the ratio of the fluorescence or TEY intensity to... [Pg.19]


See other pages where Secondary relaxation processes coefficient is mentioned: [Pg.206]    [Pg.253]    [Pg.159]    [Pg.126]    [Pg.147]    [Pg.222]    [Pg.17]    [Pg.229]    [Pg.78]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Relaxation process

Relaxation secondary

Secondary processes

Secondary processing

Secondary relaxation processes

© 2024 chempedia.info