Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation field-dependent

Peskin U and Steinberg M 1998 A temperature-dependent Schrodinger equation based on a time-dependent self consistent field approximation J. Chem. Phys. 109 704... [Pg.2329]

Inserting the separation ansatz, i.e., U , results in two nonlinearly coupled single particle Schrodinger equations, the so-called time dependent self-consistent field (TDSCF) equations ... [Pg.382]

The Schrodinger equation with its time-independent hamiltonian does not in fact constitute a dynamical theorem it is simply a description of the time-dependence of the probability field corresponding to steady states or equilibrium conditions. [Pg.482]

The field- and time-dependent cluster operator is defined as T t, ) = nd HF) is the SCF wavefunction of the unperturbed molecule. By keeping the Hartree-Fock reference fixed in the presence of the external perturbation, a two step approach, which would introduce into the coupled cluster wavefunction an artificial pole structure form the response of the Hartree Fock orbitals, is circumvented. The quasienergy W and the time-dependent coupled cluster equations are determined by projecting the time-dependent Schrodinger equation onto the Hartree-Fock reference and onto the bra states (HF f[[exp(—T) ... [Pg.115]

For molecules possessing a dipole moment jl, the effect of the radiation field e t) may be obtained by solving the time dependent Schrodinger equation,... [Pg.264]

All of the methods for designing laser pulses to achieve a desired control of a molecular dynamical process require the solution of the time-dependent Schrodinger equation for the system interacting with the radiation field. Normally, this equation must be solved many times within an iterative loop. Different possible approaches to the solution of these equations are discussed in Section V. [Pg.45]

Equation (4.a) states that the wave function must obey the time-dependent Schrodinger equation with initial condition /(t = 0) = < ),. Equation (4.b) states that the undetermined Lagrange multiplier, x t), must obey the time-dependent Schrodinger equation with the boundary condition that x(T) = ( /(T))<1> at the end of the pulse, that is at f = T. As this boundary condition is given at the end of the pulse, we must integrate the Schrodinger equation backward in time to find X(f). The final of the three equations, Eq. (4.c), is really an equation for the time-dependent electric field, e(f). [Pg.47]

Perhaps the most straightforward method of solving the time-dependent Schrodinger equation and of propagating the wave function forward in time is to expand the wave function in the set of eigenfunctions of the unperturbed Hamiltonian [41], Hq, which is the Hamiltonian in the absence of the interaction with the laser field. [Pg.69]

One way in which we can solve the problem of propagating the wave function forward in time in the presence of the laser field is to utilize the above knowledge. In order to solve the time-dependent Schrodinger equation, we normally divide the time period into small time intervals. Within each of these intervals we assume that the electric field and the time-dependent interaction potential is constant. The matrix elements of the interaction potential in the basis of the zeroth-order eigenfunctions y i Vij = (t t T(e(t)) / ) are then evaluated and we can use an eigenvector routine to compute the eigenvectors, = S) ... [Pg.70]

The first two chapters serve as an introduction to quantum theory. It is assumed that the student has already been exposed to elementary quantum mechanics and to the historical events that led to its development in an undergraduate physical chemistry course or in a course on atomic physics. Accordingly, the historical development of quantum theory is not covered. To serve as a rationale for the postulates of quantum theory, Chapter 1 discusses wave motion and wave packets and then relates particle motion to wave motion. In Chapter 2 the time-dependent and time-independent Schrodinger equations are introduced along with a discussion of wave functions for particles in a potential field. Some instructors may wish to omit the first or both of these chapters or to present abbreviated versions. [Pg.361]

The Schrodinger equation applied to atoms will thus describe the motion of each electron in the electrostatic field created by the positive nucleus and by the other electrons. When the equation is applied to molecules, due to the much larger mass of nuclei, their relative motion is considered negligible as compared to that of the electrons (Bom-Oppenheimer approximation). Accordingly, the electronic distribution in a molecule depends on the position of the nuclei and not on their motion. The kinetic energy operator for the nuclei is considered to be zero. [Pg.3]

The study of behavior of many-electron systems such as atoms, molecules, and solids under the action of time-dependent (TD) external fields, which includes interaction with radiation, has been an important area of research. In the linear response regime, where one considers the external held to cause a small perturbation to the initial ground state of the system, one can obtain many important physical quantities such as polarizabilities, dielectric functions, excitation energies, photoabsorption spectra, van der Waals coefficients, etc. In many situations, for example, in the case of interaction of many-electron systems with strong laser held, however, it is necessary to go beyond linear response for investigation of the properties. Since a full theoretical description based on accurate solution of TD Schrodinger equation is not yet within the reach of computational capabilities, new methods which can efficiently handle the TD many-electron correlations need to be explored, and time-dependent density functional theory (TDDFT) is one such valuable approach. [Pg.71]

That is, the classical DoF propagate according to a mean-field potential, the value of which is weighted by the instantaneous populations of the different quantum states. A MFT calculation thus consists of the self-consistent solution of the time-dependent Schrodinger equation (28) for the quantum DoF and Newton s equation (32) for the classical DoF. To represent the initial state (15) of the molecular system, the electronic DoF dk Q) as well as the nuclear DoF xj Q) and Pj 0) are sampled from a quasi-classical phase-space distribution [23, 24, 26]. [Pg.269]

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent (e.g., interactions with time varying external electric or magnetic fields would add to the above classical energy expression time dependent terms discussed later in this text), the separations of variables techniques can be used to reduce the Schrodinger equation to a time-independent equation. [Pg.12]

The fast-forward protocol can be used to assist an incomplete STIRAP population transfer via control of the time dependences of the phases of the fields. As a first example, we reconsider transfer of particles between sites of a linear lattice. In this example, the hopping rates, which connect nearest neighbor sites, are the analogs of the Stokes and Raman pulses in a conventional STIRAP. We now allow the hopping rates to change with time. The derivation of the fast-forward driving potential proceeds in the same manner as Section 3.3.5. The Schrodinger equation for an accelerated state T pp is... [Pg.117]

The quantum theory of molecular collisions in external fields described in this chapter is based on the solutions of the time-independent Schrodinger equation. The scattering formalism considered here can be used to calculate the collision properties of molecules in the presence of static electric or magnetic fields as well as in nonresonant AC fields. In the latter case, the time-dependent problem can be reduced to the time-independent one by means of the Floquet theory, discussed in the previous section. We will consider elastic or inelastic but chemically nonreac-tive collisions of molecules in an external field. The extension of the formalism to reactive scattering problems for molecules in external fields has been described in Ref. [12]. [Pg.321]

The formulation of the calculation of the optimal control field that guides the evolution of a quantum many-body system relies, basically, on the solution of the time-dependent Schrodinger equation. Messina et al. [25] have proposed an implementation of the calculation of the optimal control field for an n-degree-of-freedom system in which the Hartree approximation is used to solve the time-dependent Schrodinger equation. In this approximation, the n-degree-of-freedom wave function is written as a product of n single-degree-of-freedom wave functions, and the factorization is assumed to be valid for all time. [Pg.265]


See other pages where Schrodinger equation field-dependent is mentioned: [Pg.220]    [Pg.47]    [Pg.57]    [Pg.235]    [Pg.148]    [Pg.46]    [Pg.51]    [Pg.55]    [Pg.57]    [Pg.65]    [Pg.66]    [Pg.74]    [Pg.79]    [Pg.141]    [Pg.324]    [Pg.326]    [Pg.83]    [Pg.42]    [Pg.282]    [Pg.2]    [Pg.106]    [Pg.219]    [Pg.152]    [Pg.247]    [Pg.84]    [Pg.35]    [Pg.67]    [Pg.838]    [Pg.121]    [Pg.317]    [Pg.318]    [Pg.1]    [Pg.202]   
See also in sourсe #XX -- [ Pg.30 , Pg.237 ]




SEARCH



Field dependence

Field equations

© 2024 chempedia.info