Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SCF procedure

The basic self-consistent field (SCF) procedure, i.e., repeated diagonalization of the Fock matrix [26], can be viewed, if sufficiently converged, as local optimization with a fixed, approximate Hessian, i.e., as simple relaxation. To show this, let us consider the closed-shell case and restrict ourselves to real orbitals. The SCF orbital coefficients are not the... [Pg.2339]

Werner H-J and Knowles P 1985 A second order multiconfiguratlon SCF procedure with optimum convergence J. Chem. Phys. 82 5053... [Pg.2357]

The self-consistent field (SCF) procedure is in its simplest description an equation of the form... [Pg.193]

The original PCM method uses a cavity made of spherical regions around each atom. The isodensity PCM model (IPCM) uses a cavity that is defined by an isosurface of the electron density. This is defined iteratively by running SCF calculations with the cavity until a convergence is reached. The self-consistent isodensity PCM model (SCI-PCM) is similar to IPCM in theory, but different in implementation. SCI-PCM calculations embed the cavity calculation in the SCF procedure to account for coupling between the two parts of the calculation. [Pg.212]

These options to the IRC keyword increase the maximum number of points on each side of the path to 15 and the step size between points to 0.3 amu bohr (30 units of 0.1 amu bohr), where the defaults are 6 steps and 0.1 amu bohr, respectively. The SCF=QC keyword requests the quadratic convergence SCF procedure, a somewhat slower but significantly more reliable SCF procedure. [Pg.200]

SCF procedure is begun, and then used in each SCF iteration. Formally, in the large basis set limit the SCF procedure involves a computational effort which increases as the number of basis functions to the fourth power. Below it will be shown that the scaling may be substantially smaller in acmal calculations. [Pg.68]

The Multi-configuration Self-consistent Field (MCSCF) method can be considered as a Cl where not only the coefficients in front of the determinants are optimized by the variational principle, but also the MOs used for constructing the determinants are made optimum. The MCSCF optimization is iterative just like the SCF procedure (if the multi-configuration is only one, it is simply HF). Since the number of MCSCF iterations required for achieving convergence tends to increase with the number of configurations included, the size of MCSCF wave function that can be treated is somewhat smaller than for Cl methods. [Pg.117]

For computational purposes it is convenient to work with canonical MOs, i.e. those which make the matrix of Lagrange multipliers diagonal, and which are eigenfunctions of the Fock operator at convergence (eq, (3.41)). This corresponds to a specific choice of a unitary transformation of the occupied MOs. Once the SCF procedure has converged, however, we may chose other sets of orbitals by forming linear combinations of the canonical MOs. The total wave function, and thus all observable properties, are independent of such a rotation of the MOs. [Pg.227]

The last term in Eq. 11.47 gives apparently the "average one-electron potential we were asking for in Eq. 11.40. The Hartree-Fock equations (Eq. 11.46) are mathematically complicated nonlinear integro-differential equations which are solved by Hartree s iterative self-consistent field (SCF) procedure. [Pg.226]

Molecular orbital calculations for the parent vinyl cation, Cj H3, were first reported by Hoffmann (161), who used the extended Hiickel method, and more recently by Yonezawa and co-workers (162), who used a semiempirical SCF procedure. Both treated the problem of classical, 172 (R = H), versus bridged structures, 173, but the methods suffered from their inability to account satisfactorily for bond-length changes, and neither discussed the question of linear, 172a, versus bent, 172b, structures. [Pg.272]

The existing SCF procedures are of two types in restricted methods, the MO s, except for the hipest (singly) occupied MO, are filled by two electrons with antiparallel spin, while in unrestricted methods, the variation procedure is performed with individual spin orbitals. In the latter, a total wave function is not an eigenvalue of the spin operator S, which is disadvantageous in many applications because of a necessary annihilation of higher multiplets by the projection operator. Since in practical applications the unrestricted methods have not proved to be remarkably superior, we shall call our attention in this review mainly to the restricted methods. [Pg.334]

There is ample evidence [9,17,44] that the INDO SCF procedure transformed according to this scheme (C INDO) can provide predictions comparable to those of minimal-basis-set ab initio SCF calculations for conformations and rotational barriers of conjugated molecules in the ground state. [Pg.382]

In this approach, the electron density of a solvated molecule (p) is calculated using the SCF procedure where the isolated molecule Hamiltonian Hgas is replaced by the solvated molecule Hamiltonian //sol ... [Pg.109]

There is a fundamental difference between Eqs. 4.12 and 4.15 despite their apparent similarity. The term electron density (see Eq. 4.13), whereas the term Vcxt in Eq. 4.12, is constant in the SCF procedure. To reflect this fact, the approach based on Eqs. 4.13-4.15 is frequently called the Self-Consistent Reaction Field method (SCRF). (Throughout the text, AXY/SCRF denotes combined quantum-mechanical/reaction field calculations where XXX specifies the quantum-mechanical method.)... [Pg.109]

The nonelectrostatic components of the free energy such as the energy of cavity formation AGcav or components that take into account atomistic details of the medium (interactions between atoms inside the cavity and those in the medium) are calculated using empirical approximations (see Reference 164 for review or 165 for recent developments). These terms are do not affect the SCF procedure since their dependence on electron density p is usually neglected. [Pg.110]


See other pages where SCF procedure is mentioned: [Pg.2340]    [Pg.389]    [Pg.42]    [Pg.90]    [Pg.256]    [Pg.175]    [Pg.193]    [Pg.194]    [Pg.368]    [Pg.42]    [Pg.396]    [Pg.438]    [Pg.68]    [Pg.72]    [Pg.72]    [Pg.72]    [Pg.78]    [Pg.116]    [Pg.118]    [Pg.334]    [Pg.335]    [Pg.155]    [Pg.155]    [Pg.155]    [Pg.381]    [Pg.381]    [Pg.29]    [Pg.111]    [Pg.238]    [Pg.382]    [Pg.37]    [Pg.88]    [Pg.116]    [Pg.442]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Computer Time Saving in the SCF Procedure

How to Safely Change the SCF Procedure

Possible Results of an SCF Procedure

SCF

SCFs

The SCF procedure

© 2024 chempedia.info