Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scaling laws length scales

The values of m given above conform to Hemng s scaling law (1950) which states that since the driving force for sintering, the transport length, the area over which uansport occurs and the volume of matter to be transported are proportional to a, and respectively, the times for equivalent change in two powder samples of initial particle size ai q and 2,0 are... [Pg.206]

The hard sphere (HS) interaction is an excellent approximation for sterically stabilized colloids. However, there are other interactions present in colloidal systems that may replace or extend the pure HS interaction. As an example let us consider soft spheres given by an inverse power law (0 = The energy scale Vq and the length scale cr can be com-... [Pg.751]

The most important property of the self-organized critical state is the presence of locally connected domains of all sizes. Since a given perturbation of the state 77 can lead to anything from a trivial one-site shift to a lattice-wide avalanche, there are no characteristic length scales in the system. Bak, et al. [bak87] have, in fact, found that the distribution function D s) of domains of size s obeys the power law... [Pg.441]

The fact that there are no characteristic length scales immediately implies a similar lack of any characteristic time scales for the fluctuations. Consider the effect of a single perturbation of a random site of a system in the critical state. The perturbation will spread to the neighbors of the site, to the next nearest neighbors, and so on, until, after a time r and a total of / sand slides, the effects will die out. The distribution of the life-times of the avalanches, D t), obeys the power law... [Pg.441]

Confined flows typically exhibit laminar-flow regimes, i.e. rely on a diffusion mixing mechanism, and consequently are only slowly mixed when the diffusion distance is set too large. For this reason, in view of the potential of microfabrication, many authors pointed to the enhancement of mass transfer that can be achieved on further decreasing the diffusional length scales. By simple correlations based on Fick s law, it is evident that short liquid mixing times in the order of milliseconds should result on decreasing the diffusion distance to a few micrometers. [Pg.44]

Simha [53] made the first attempts to model the transition from a dilute to a concentrated solution. He assumed that in the range from lscaling laws a theory has been developed which allows for the prediction of the influence of Mw c and the solvent power on the screening length [54,55]. This theory is founded on the presumption that above a critical concentration, c, the coils overlap and interpenetrate. Furthermore it is assumed that in a thermody-... [Pg.10]

A simple scaling law has been postulated to define the relationship between polymer length and Rg under various solvent conditions (Flory, 1953) ... [Pg.278]

In this definition, ps and pt are the solid and fluid densities, respectively. The characteristic diameter of the particles is ds (which is used in calculating the projected cross-sectional area of particle in the direction of the flow in the drag law). The kinematic viscosity of the fluid is vf and y is a characteristic strain rate for the flow. In a turbulent flow, y can be approximated by l/r when ds is smaller than the Kolmogorov length scale r. (Unless the turbulence is extremely intense, this will usually be the case for fine particles.) Based on the Stokes... [Pg.273]

Fig. 8.14. Surface densities of atomic and molecular hydrogen in the Galaxy as a function of Galactocentric distance the Sun is at 8.5 kpc. Beyond that distance, the deduced surface density depends on the assumed law of Galactic rotation KBH refers to Kulkarni, Blitz and Heiles (1982). Assuming their rotation curve, the total gas surface density falls by about a factor of 2 between 4.5 and 13 kpc, corresponding to an exponential fall-off with a scale length a l of about 12 kpc. After Dame (1993). Courtesy T.M. Dame. Fig. 8.14. Surface densities of atomic and molecular hydrogen in the Galaxy as a function of Galactocentric distance the Sun is at 8.5 kpc. Beyond that distance, the deduced surface density depends on the assumed law of Galactic rotation KBH refers to Kulkarni, Blitz and Heiles (1982). Assuming their rotation curve, the total gas surface density falls by about a factor of 2 between 4.5 and 13 kpc, corresponding to an exponential fall-off with a scale length a l of about 12 kpc. After Dame (1993). Courtesy T.M. Dame.

See other pages where Scaling laws length scales is mentioned: [Pg.313]    [Pg.357]    [Pg.2370]    [Pg.2374]    [Pg.261]    [Pg.418]    [Pg.203]    [Pg.2]    [Pg.118]    [Pg.489]    [Pg.528]    [Pg.592]    [Pg.672]    [Pg.437]    [Pg.98]    [Pg.208]    [Pg.148]    [Pg.38]    [Pg.155]    [Pg.238]    [Pg.614]    [Pg.52]    [Pg.117]    [Pg.196]    [Pg.177]    [Pg.228]    [Pg.55]    [Pg.116]    [Pg.127]    [Pg.242]    [Pg.359]    [Pg.22]    [Pg.144]    [Pg.44]    [Pg.47]    [Pg.76]    [Pg.99]    [Pg.66]    [Pg.244]    [Pg.263]    [Pg.512]   
See also in sourсe #XX -- [ Pg.339 , Pg.340 , Pg.341 ]




SEARCH



Length scales

© 2024 chempedia.info