Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

S standard deviation

Alternatively, a confidence interval can be expressed in terms of the population s standard deviation and the value of a single member drawn from the population. Thus, equation 4.9 can be rewritten as a confidence interval for the population mean... [Pg.76]

Earlier we introduced the confidence interval as a way to report the most probable value for a population s mean, p, when the population s standard deviation, O, is known. Since is an unbiased estimator of O, it should be possible to construct confidence intervals for samples by replacing O in equations 4.10 and 4.11 with s. Two complications arise, however. The first is that we cannot define for a single member of a population. Consequently, equation 4.10 cannot be extended to situations in which is used as an estimator of O. In other words, when O is unknown, we cannot construct a confidence interval for p, by sampling only a single member of the population. [Pg.80]

Thus, a 10% improvement in the method s standard deviation changes the overall variance by approximately 4%. [Pg.181]

Quantitative stmcture—activity relationships have been estabUshed using the Hansch multiparameter approach (14). For rat antigoiter activities (AG), the following (eq. 1) was found, where, as in statistical regression equations, n = number of compounds, r = regression coefficient, and s = standard deviation... [Pg.50]

The procedure described above is a pictorial approximation of a process called scale-space filtering of a function, proposed by Witkin (1983). The surface (e.g., Fig. 6) swept out by a filtered signal as the Gaussian filter s standard deviation is varied, is called scale-space image of the signal and is given by... [Pg.223]

Fig. 2.18.2. Comparison of valve D (Fig. 2.18.1) functions Upper plot the valve does not operate reproducibly. Lower plot measurements of the pressure rise per second (dp/s) are in the order of magnitude of 1.2 1CT4 mbar/s, standard deviation (SA) approx. 0.04 KT4 mbar/s (measurements by AMSCO Finn-Aqua, D-50356 Hiirth, Germany). Fig. 2.18.2. Comparison of valve D (Fig. 2.18.1) functions Upper plot the valve does not operate reproducibly. Lower plot measurements of the pressure rise per second (dp/s) are in the order of magnitude of 1.2 1CT4 mbar/s, standard deviation (SA) approx. 0.04 KT4 mbar/s (measurements by AMSCO Finn-Aqua, D-50356 Hiirth, Germany).
The log deviation are logC<0.1, standard deviation (SD) is between 5% 30%. (majority element s standard deviation less than 10%, only that of S and Os are less than 30%)... [Pg.397]

Weights o) = 1/s = standard deviation at concentrations i. n = number of standard measurements... [Pg.121]

This common variable-wise scaling method consists of mean-centering followed by division of the resnlting mean-centered intensities by the variable s standard deviation ... [Pg.370]

S.g = standard deviation of individual values S = standard deviation of the average of n values... [Pg.9]

The absolute values of T , S, and oq in the layer 1500-2100 m significantly vary from one survey to another, which may be explained by the biased calibrations of CTD profilers [14]. In our case, it is manifested in the vertical homogeneity of T and S standard deviations (respectively, 0.031-0.033 °C and 0.021-0.027 psu) over the depth range from 1500 to 2100 m. According to the measurements carried out at the beginning of the 1990s, the mean values of T and S in the near-bottom layer of the Black Sea were 8.895 °C and... [Pg.224]

PDiM—absolute value of the distance of the Rrs first atom from N1C2C3 plane Di—distance of the R s first atom from the nearest core atom Ai, Aj—angles in which D/ is involved (/ < j) x—average (mean) S(.y)—standard error of the mean s—standard deviation min, max—minimum, maximum values... [Pg.164]

Note All determinations are weight percent, m, Mean s, standard deviation catalog number, British Museum Catalog number (15) var., variety N, none detected. [Pg.328]

Precision of an assay describes how well an assay result can be reproduced. Within-run precision is defined as the precision of the same sample run on several occasions with the same assay under the same assay conditions. Between-run precision is an index of the ability of the assay to reproduce the same result on the same sample at different runs, time moments, by different operators or in different labs. Precision is described by the variance (s ), standard deviation (s) and coefficient of variation (CV). [Pg.581]


See other pages where S standard deviation is mentioned: [Pg.180]    [Pg.181]    [Pg.41]    [Pg.105]    [Pg.29]    [Pg.241]    [Pg.110]    [Pg.120]    [Pg.75]    [Pg.338]    [Pg.55]    [Pg.205]    [Pg.185]    [Pg.68]    [Pg.120]    [Pg.217]    [Pg.25]    [Pg.99]    [Pg.516]    [Pg.57]    [Pg.117]    [Pg.105]    [Pg.804]    [Pg.139]    [Pg.1683]    [Pg.58]    [Pg.276]    [Pg.318]    [Pg.265]    [Pg.237]    [Pg.2279]    [Pg.84]    [Pg.94]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Marquardt s percent standard deviation

Standard deviation

Standard deviation standardization

© 2024 chempedia.info