Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

S orbitals, shapes

The formula was derived for metals, where one can assume a s-orbital shaped apex atom and a one dimensional symmetric tunneling barrier in the limit of a small bias voltage. [Pg.352]

An s orbital is spherically symmetrical and can contain a maximum of two electrons with opposed spins. A p orbital has a solid figure-of-eight shape there are three equivalent p orbitals for each principal quantum number they correspond to the three axes of rectangular coordinates. [Pg.152]

In elements of Periods 2 and 3 the four orbitals are of two kinds the first two electrons go into a spherically symmetrical orbital—an s orbital with a shape like that shown in Figure 2.7—and the next six electrons into three p orbitals each of which has a roughly doublepear shape, like those shown unshaded in each half of Figure 2.10. [Pg.55]

Section 1 1 A review of some fundamental knowledge about atoms and electrons leads to a discussion of wave functions, orbitals, and the electron con figurations of atoms Neutral atoms have as many electrons as the num ber of protons m the nucleus These electrons occupy orbitals m order of increasing energy with no more than two electrons m any one orbital The most frequently encountered atomic orbitals m this text are s orbitals (spherically symmetrical) and p orbitals ( dumbbell shaped)... [Pg.47]

What do orbitals look like There are four different kinds of orbitals, denoted s, p, d, and f] each with a different shape. Of the four, we ll be concerned primarily with s and p orbitals because these are the most common in organic and biological chemistry. The s orbitals are spherical, with the nucleus at their center p orbitals are dumbbell-shaped and four of the five d orbitals are doverleaf-shaped, as shown in Figure 1.3. The fifth d orbital is shaped like an elongated dumbbell with a doughnut around its middle. [Pg.5]

Figure 1.3 Representations of s, p, and d orbitals. The s orbitals are spherical, the p orbitals are dumbbell-shaped, and four of the five d orbitals are cloverleafshaped. Different lobes of p orbitals are often drawn for convenience as teardrops, but their true shape is more like that of a doorknob, as indicated. Figure 1.3 Representations of s, p, and d orbitals. The s orbitals are spherical, the p orbitals are dumbbell-shaped, and four of the five d orbitals are cloverleafshaped. Different lobes of p orbitals are often drawn for convenience as teardrops, but their true shape is more like that of a doorknob, as indicated.
An atom consists of a positively charged nucleus surrounded by one or more negatively charged electrons. The electronic structure of an atom can be described by a quantum mechanical wave equation, in which electrons are considered to occupy orbitals around the nucleus. Different orbitals have different energy levels and different shapes. For example, s orbitals are spherical and p orbitals are dumbbell-shaped. The ground-state electron configuration of an... [Pg.26]

Although it is not shown in Figure 6.7, p orbitals, like s orbitals, increase in size as the principal quantum number n increases. Also not shown are the shapes and sizes of d and f orbitals. We will say more about the nature of d orbitals in Chapter 15. [Pg.143]

FIGURE 3.16 Three common hybridization schemes shown as outlines of the amplitude of the wavefunction and in terms of the orientations of the hybrid orbitals, (a) An s-orbital and a p-orbital hybridize into two sp hybrid orbitals that >oint in opposite direc tions, forming a linear molecular shape, (b) An s-orbital and two p-orbitals can blend together to give three ip hybrid orbitals that point to the corners of an equilateral triangle, (c) An s-orbital and three p-orbitals can blend together to give four sp hybrid orbitals that point to the corners of a tetrahedron. [Pg.234]

The raw output of a molecular structure calculation is a list of the coefficients of the atomic orbitals in each LCAO (linear combination of atomic orbitals) molecular orbital and the energies of the orbitals. The software commonly calculates dipole moments too. Various graphical representations are used to simplify the interpretation of the coefficients. Thus, a typical graphical representation of a molecular orbital uses stylized shapes (spheres for s-orbitals, for instance) to represent the basis set and then scales their size to indicate the value of the coefficient in the LCAO. Different signs of the wavefunctions are typically represented by different colors. The total electron density at any point (the sum of the squares of the occupied wavefunctions evaluated at that point) is commonly represented by an isodensity surface, a surface of constant total electron density. [Pg.700]

Among atomic orbitals, s orbitals are spherical and have no directionality. Other orbitals are nonspherical, so, in addition to having shape, every orbital points in some direction. Like energy and orbital shape, orbital direction is quantized. Unlike footballs, p, d, and f orbitals have restricted numbers of possible orientations. The magnetic quantum number (fflj) indexes these restrictions. [Pg.472]

As Increases, the detailed shapes of the p orbitals become more complicated (the number of nodes increases, just as for s orbitals). Nevertheless, the directionality of the orbitals does not change. Each p orbital is perpendicular to the other two in its set, and each p orbital has its lobes along its preferred axis, where electron density is high. To an approaching atom, therefore, an electron in a 3p orbital presents the same characteristics as one in a 2p orbital, except that the 3p orbital is bigger. Consequently, the shapes and relative orientations of the 2p orbitals in Figure 7-22 represent the prominent spatial features of all p orbitals. [Pg.479]

The chemistry of all the common elements can be described completely using s, p, and d orbitals, so we need not extend our catalog of orbital shapes to the f orbitals and beyond. [Pg.479]

Any hybrid orbital is named from the atomic valence orbitals from which It Is constmcted. To match the geometry of methane, we need four orbitals that point at the comers of a tetrahedron. We construct this set from one s orbital and three p orbitals, so the hybrids are called s p hybrid orbitais. Figure 10-8a shows the detailed shape of an s p hybrid orbital. For the sake of convenience and to keep our figures as uncluttered as possible, we use the stylized view of hybrid orbitals shown in Figure 10-8Z). In this representation, we omit the small backside lobe, and we slim down the orbital in order to show several orbitals around an atom. Figure 10-8c shows a stylized view of an s p hybridized atom. This part of the figure shows that all four s p hybrids have the same shape, but each points to a different comer of a regular tetrahedron. [Pg.663]

To obtain pictures of the orbital ip = R0< >, we would need to combine a plot of R with that of 0, which requires a fourth dimension. There are two common ways to overcome this problem. One is to plot contour values of ip for a plane through the three-dimensional distribution as shown in Figures 3.8a,c another is to plot the surface of one particular contour in three dimensions, as shown in Figures 3.8b,d. The shapes of these surfaces are referred to as the shape of the orbital. However, plots of the angular function 0 (Figure 3.7) are often used to describe the shape of the orbital ip = RQ because they are simple to draw. This is satisfactory for s orbitals, which have a spherical shape, but it is only a rough approximation to the true shape of p orbitals, which do not consist of two spheres but rather two squashed spheres or doughnut shapes. [Pg.61]

Figure 10.4 Shapes of the s, p, and d atomic orbitals. The s orbital (a) is spherically symmetrical about the nucleus. The three p orbitals (b) are figure-of-eight lobes orientated along the three orthogonal axes (only z axis shown). The five d orbitals (c, d, and e) are four quatrefoil lobes, one orientated along the x-y axes, three between the axes, and the fifth (e) a figure-of-eight along the z axis with an additional donut around the nucleus. The orbitals are not drawn to the same scale. Figure 10.4 Shapes of the s, p, and d atomic orbitals. The s orbital (a) is spherically symmetrical about the nucleus. The three p orbitals (b) are figure-of-eight lobes orientated along the three orthogonal axes (only z axis shown). The five d orbitals (c, d, and e) are four quatrefoil lobes, one orientated along the x-y axes, three between the axes, and the fifth (e) a figure-of-eight along the z axis with an additional donut around the nucleus. The orbitals are not drawn to the same scale.
If l = 0, then the orbital is called an s-orbital and has a spherical shape with the nucleus at the center of the sphere. The greater the value of n, the larger the sphere. [Pg.110]

The orbital angular-momentum quantum number, , defines the shape of the atomic orbital (for example, s-orbitals have a spherical boundary surface, while p-orbitals are represented by a two-lobed shaped boundary surface). can have integral values from 0 to (n - 1) for each value of n. The value of for a particular orbital is designated by the letters s, p, d and f, corresponding to values of 0, 1, 2 and 3 respectively (Table 1.2). [Pg.7]


See other pages where S orbitals, shapes is mentioned: [Pg.1309]    [Pg.1309]    [Pg.313]    [Pg.199]    [Pg.4]    [Pg.75]    [Pg.75]    [Pg.508]    [Pg.661]    [Pg.662]    [Pg.671]    [Pg.4]    [Pg.46]    [Pg.93]    [Pg.98]    [Pg.155]    [Pg.11]    [Pg.61]    [Pg.100]    [Pg.195]    [Pg.416]    [Pg.498]    [Pg.164]    [Pg.284]    [Pg.46]    [Pg.13]    [Pg.146]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Orbit shapes

Orbital s orbitals

Orbital shapes

Orbitals shape

S Orbital, shape

S Orbital, shape

S orbitals

S-shape

S-shaped

Shapes of s and p orbitals

The shapes of s orbitals

© 2024 chempedia.info