Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium species, reaction with

No evidence of ruthenium metal formation was found in catalytic reactions until temperatures above about 265°C (at 340 atm) were reached. The presence of Ru metal in such runs could be easily characterized by its visual appearance on glass liners and by the formation of hydrocarbon products (J/1J) The actual catalyst involved in methyl and glycol acetate formation is therefore almost certainly a soluble ruthenium species. In addition, the observation of predominantly a mononuclear complex under reaction conditions in combination with a first-order reaction rate dependence on ruthenium concentration (e.g., see reactions 1 and 3 in Table I) strongly suggests that the catalytically active species is mononuclear. [Pg.214]

In this paper we disclose the syngas homologation of carboxylic acids via ruthenium homogeneous catalysis. This novel homologation reaction involves treatment of lower MW carboxylic acids with synthesis gas (C0/H2) in the presence of soluble ruthenium species, e.g., Ru02, Ru3(C0)12, H4Ru4(C0)12, coupled with iodide-containing promoters such as HI or an alkyl iodide (1). [Pg.224]

The reactions with ruthenium carbonyl catalysts were carried out in pressurized stainless steel reactors glass liners had little effect on the activity. When trimethylamine is used as base, Ru3(CO) 2> H Ru4(CO) 2 an< H2Ru4(CO)i3 lead to nearly identical activities if the rate is normalized to the solution concentration of ruthenium. These results suggest that the same active species is formed under operating conditions from each of these catalyst precursors. The ambient pressure infrared spectrum of a typical catalyst solution (prepared from Ru3(CO)i2> trimethylamine, water, and tetrahydrofuran and sampled from the reactor) is relatively simple (vq q 2080(w), 2020(s), 1997(s), 1965(sh) and 1958(m) cm ). However, the spectrum depends on the concentration of ruthenium in solution. The use of Na2C(>3 as base leads to comparable spectra. [Pg.322]

Barrau and coworkers have synthesized a series of iron and ruthenium complexes by irradiation of Me2HGe(CH)KGeMe2H and Me2HGe(CH)K SiMe2H (n = 1, 2) in the presence of Fe(CO)5 and Ru3(CO)i293. In each case irradiation causes CO loss, with the formation of the M(CO)4 species (reaction 43). When n = 2 the products are photostable with n = 1 (65) a mixture of products (66-69) are obtained due to secondary photolysis (reaction 44). The mechanism, outlined in Scheme 23, is presented to explain these observations. [Pg.750]

Ruthenium complexes do not have an extensive history as alkyne hydrosilylation catalysts. Oro noted that a ruthenium(n) hydride (Scheme 11, A) will perform stepwise alkyne insertion, and that the resulting vinylruthenium will undergo transmetallation upon treatment with triethylsilane to regenerate the ruthenium(n) hydride and produce the (E)-f3-vinylsilane in a stoichiometric reaction. However, when the same complex is used to catalyze the hydrosilylation reaction, exclusive formation of the (Z)-/3-vinylsilane is observed.55 In the catalytic case, the active ruthenium species is likely not the hydride A but the Ru-Si species B. This leads to a monohydride silylmetallation mechanism (see Scheme 1). More recently, small changes in catalyst structure have been shown to provide remarkable changes in stereoselectivity (Scheme ll).56... [Pg.798]

Ru(edta)(H20)] reacts very rapidly with nitric oxide (171). Reaction is much more rapid at pH 5 than at low and high pHs. The pH/rate profile for this reaction is very similar to those established earlier for reaction of this ruthenium(III) complex with azide and with dimethylthiourea. Such behavior may be interpreted in terms of the protonation equilibria between [Ru(edtaH)(H20)], [Ru(edta)(H20)], and [Ru(edta)(OH)]2- the [Ru(edta)(H20)] species is always the most reactive. The apparent relative slowness of the reaction of [Ru(edta)(H20)] with nitric oxide in acetate buffer is attributable to rapid formation of less reactive [Ru(edta)(OAc)] [Ru(edta)(H20)] also reacts relatively slowly with nitrite. Laser flash photolysis studies of [Ru(edta)(NO)]-show a complicated kinetic pattern, from which it is possible to extract activation parameters both for dissociation of this complex and for its formation from [Ru(edta)(H20)] . Values of AS = —76 J K-1 mol-1 and A V = —12.8 cm3 mol-1 for the latter are compatible with AS values between —76 and —107 J K-1mol-1 and AV values between —7 and —12 cm3 mol-1 for other complex-formation reactions of [Ru(edta) (H20)]- (168) and with an associative mechanism. In contrast, activation parameters for dissociation of [Ru(edta)(NO)] (AS = —4JK-1mol-1 A V = +10 cm3 mol-1) suggest a dissociative interchange mechanism (172). [Pg.93]

Introduction of mesityl groups at the porphyrin ring can prevent the formation of the dimeric products and the reaction with dioxygen now leads to ruthenium(VI)-dioxo complexes of TMP (tetramesitylporphyrin) [35], The tram-Ru(VI)02-TM P species can catalyse the epoxidation of alkenes as well as whole range of other oxidation reactions. After transfer of one oxygen atom to an organic substrate Ru(IV)0-TMP is formed, which disproportionates to an equilibrium of Ru02 and llu ). [Pg.316]

The electrochemical oxidation of [ (bpy)2(NH3)Ru 2(/i-0)] releases N2. Oxidation of the ruthenium species initially gives [ (bpy)2(NH3)Ru 2(/i-0)] followed by irreversible five-electron oxidation and H+ loss. The Ru ° complexes [ (bpy)2LRu 2(/i-0)(p-02CMe)2] have been prepared as perchlorate salts for L = im, 1 - and 4-Meim. Structural data for L = 1 -Meim confirm a trans arrangement of imidazole and 0x0 ligands. The complexes exhibit reversible one-electron oxidation and reduction processes. The interaction of [ (bpy)2(H20)Ru 2(/u-0)] " with DNA results in reductive cleavage of the complex to form [Ru(bpy)2(H20)2] and the rate of reaction increases in the presence... [Pg.559]

A number of ruthenium-based catalysts for syn-gas reactions have been probed by HP IR spectroscopy. For example, Braca and co-workers observed the presence of [Ru(CO)3l3]", [HRu3(CO)ii]" and [HRu(CO)4] in various relative amounts during the reactions of alkenes and alcohols with CO/H2 [90]. The hydrido ruthenium species were found to be active in alkene hydroformylation and hydrogenation of the resulting aldehydes, but were inactive for alcohol carbonylation. By contrast, [Ru(CO)3l3]" was active in the carbonylation of alcohols, glycols, ethers and esters and in the hydrogenation of alkenes and oxygenates. [Pg.131]


See other pages where Ruthenium species, reaction with is mentioned: [Pg.265]    [Pg.218]    [Pg.124]    [Pg.174]    [Pg.199]    [Pg.257]    [Pg.30]    [Pg.358]    [Pg.168]    [Pg.247]    [Pg.206]    [Pg.37]    [Pg.1073]    [Pg.151]    [Pg.45]    [Pg.243]    [Pg.443]    [Pg.225]    [Pg.84]    [Pg.363]    [Pg.359]    [Pg.420]    [Pg.434]    [Pg.129]    [Pg.147]    [Pg.309]    [Pg.343]    [Pg.347]    [Pg.979]    [Pg.316]    [Pg.464]    [Pg.739]    [Pg.29]    [Pg.136]    [Pg.121]    [Pg.250]    [Pg.632]    [Pg.349]   


SEARCH



Reaction species

Ruthenium reaction with

Ruthenium reactions

Ruthenium species

© 2024 chempedia.info