Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

RTD and Multiple Reactions

Example 14.6 derives a rather remarkable result. Here is a way of gradually shutting down a CSTR while keeping a constant outlet composition. The derivation applies to an arbitrary SI a and can be extended to include multiple reactions and adiabatic reactions. It is been experimentally verified for a polymerization. It can be generalized to shut down a train of CSTRs in series. The reason it works is that the material in the tank always experiences the same mean residence time and residence time distribution as existed during the original steady state. Hence, it is called constant RTD control. It will cease to work in a real vessel when the liquid level drops below the agitator. [Pg.525]

Tanks-in-Series Model Versus Dispersion Model. We have seen that we can apply both of these one-parameter models to tubular reactors using the variance of the RTD. For first-order reactions the two models can be applied with equal ease. However, the tanks-in-series model is mathematically easier to use to obtain the effluent concentration and conversion for reaction orders other than one and for multiple reactions. However, we need to ask what would be the accuracy of using the tanks-in-series model over the dispersion model. These two models are equivalent when the Peclet-Bodenstein number is related to the number of tanks in series, n, by the equation ... [Pg.892]

In conclusion to this section, research in the RTD area is always active and the initial concepts of Danckwerts are gradually being completed and extended. The population balance approach provides a theoretical framework for this generalization. However, in spite of the efforts of several authors, simple procedures, easy to use by practitioners, would still be welcome in the field of unsteady state systems (variable volumes and flow rates), multiple inlet/outlet reactors, variable density mixtures, systems in which the mass-flowrate is not conserved, etc... On the other hand, the promising "generalized reaction time distribution" approach could be developed if suitable experimental methods were available for its determination. [Pg.158]

In this section we ouUine the use of RTDs to predict the yield of homogeneous isothermal reactions, based on the pioneering treatments of Danckwerts (1953) and Zwietering (1959) and a proof of optimality due to Chauhan et al. (1972). If there are multiple reactants, the feed stream is assumed to be premixed. [Pg.13]

The chief weakness of RTD analysis is that from the diagnostic perspective, an RTD study can identify whether the mixing is ideal or nonideal, bnt it is not able to uniquely determine the namre of the nonideality. Many different nonideal flow models can lead to exactly the same tracer response or RTD. The sequence in which a reacting fluid interacts with the nonideal zones in a reactor affects the conversion and yield for all reactions with other than first-order kinetics. This is one limitation of RTD analysis. Another limitation is that RTD analysis is based on the injection of a single tracer feed, whereas real reactors often employ the injection of multiple feed streams. In real reactors the mixing of separate feed streams can have a profound influence on the reaction. A third limitation is that RTD analysis is incapable of providing insight into the nature... [Pg.1422]


See other pages where RTD and Multiple Reactions is mentioned: [Pg.292]    [Pg.855]    [Pg.927]    [Pg.927]    [Pg.1096]    [Pg.292]    [Pg.855]    [Pg.927]    [Pg.927]    [Pg.1096]    [Pg.299]    [Pg.999]    [Pg.168]    [Pg.25]    [Pg.2115]    [Pg.2101]    [Pg.133]    [Pg.230]   


SEARCH



Multiple reactions

RTDs

Reaction multiple reactions

© 2024 chempedia.info