Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium decomposition

NaCl 22NaHC03 9OO2 -J- 31H2O (4) In the preparation of the HNCC of rhodium, decomposition by carbon... [Pg.312]

Conventional triorganophosphite ligands, such as triphenylphosphite, form highly active hydroformylation catalysts (95—99) however, they suffer from poor durabiUty because of decomposition. Diorganophosphite-modified rhodium catalysts (94,100,101), have overcome this stabiUty deficiency and provide a low pressure, rhodium catalyzed process for the hydroformylation of low reactivity olefins, thus making lower cost amyl alcohols from butenes readily accessible. The new diorganophosphite-modified rhodium catalysts increase hydroformylation rates by more than 100 times and provide selectivities not available with standard phosphine catalysts. For example, hydroformylation of 2-butene with l,l -biphenyl-2,2 -diyl... [Pg.374]

Trifluoromethyl-substituted diazonium betaines [176]. Synthetic routes to trifluoromethyl-substituted diazo alkanes, such as 2,2,2-trifluorodiazoethane [ 177, 7 78, 179] and alkyl 3,3,3-trifluoro-2-diazopropionates [24], have been developed Rhodium-catalyzed decomposition of 3,3,3-tnfluoro-2-diazopropionates offers a simple preparative route to highly reactive carbene complexes, which have an enormous synthetic potential [24] [3-1-2] Cycloaddition reactions were observed on reaction with nitnles to give 5-alkoxy-4-tnfluoromethyloxazoles [750] (equation 41)... [Pg.862]

Good rhodium retention results were obtained after several recycles. However, optimized ligand/metal ratios and leaching and decomposition rates, which can result in the formation of inactive catalyst, are not known for these ligands and require testing in continuous mode. As a reference, in the Ruhrchemie-Rhone-Poulenc process, the losses of rhodium are <10 g Rh per kg n-butyraldehyde. [Pg.268]

The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

Intermediate 37 can be transformed into ( )-thienamycin [( )-1)] through a sequence of reactions nearly identical to that presented in Scheme 3 (see 22— 1). Thus, exposure of /(-keto ester 37 to tosyl azide and triethylamine results in the facile formation of pure, crystalline diazo keto ester 4 in 65 % yield from 36 (see Scheme 5). Rhodium(n) acetate catalyzed decomposition of 4, followed by intramolecular insertion of the resultant carbene 3 into the proximal N-H bond, affords [3.2.0] bicyclic keto ester 2. Without purification, 2 is converted into enol phosphate 42 and thence into vinyl sulfide 23 (76% yield from 4).18 Finally, catalytic hydrogenation of 23 proceeds smoothly (90%) to afford ( )-thienamycin... [Pg.262]

In the context of 12, the diazo keto function and the thiolactam are in proximity. This circumstance would seem to favor any process leading to the union of these two groupings. It is conceivable that decomposition of the diazo function in 12 with rhodium(n) acetate would furnish a transitory electron-deficient carbene which would be rapidly intercepted by the proximal thiolactam sulfur atom (see 20, Scheme 4). After spontaneous ring contraction of the... [Pg.475]

From a study of the decompositions of several rhodium(II) carboxylates, Kitchen and Bear [1111] conclude that in alkanoates (e.g. acetates) the a-carbon—H bond is weakest and that, on reaction, this proton is transferred to an oxygen atom of another carboxylate group. Reduction of the metal ion is followed by decomposition of the a-lactone to CO and an aldehyde which, in turn, can further reduce metal ions and also protonate two carboxyl groups. Thus reaction yields the metal and an acid as products. In aromatic carboxylates (e.g. benzoates), the bond between the carboxyl group and the aromatic ring is the weakest. The phenyl radical formed on rupture of this linkage is capable of proton abstraction from water so that no acid product is given and the solid product is an oxide. [Pg.230]

Rhodium, iodotetrakis(difluoro(diethylamino)-phosphine)-, 4, 924 Rhodium, pentaamminethiocyanato-base hydrolysis, 1, 504 Rhodium, pentaammincurea-linkage isomerism, 4, 961 Rhodium, pentaammine(urea)-decomposition, 1,186... [Pg.211]

The transition-metal catalyzed decomposition of thiirene dioxides has been also investigated primarily via kinetic studies103. Zerovalent platinum and palladium complexes and monovalent iridium and rhodium complexes were found to affect this process, whereas divalent platinum and palladium had no effect. The kinetic data suggested the mechanism in equation 7. [Pg.400]

Decomposition of rhodium acetyl acetonate, Rh(CH3COCHCOCH3)3 at 250°C and 1 atm. Decomposition of rhodium trifluoro-acetyl acetonate, Rh(C5H4F302)3 at 400°C and 1 atm. [Pg.94]

CVD Reactions. The rhodium halides, like those of the other platinum group metal s, are volatile with a decomposition pointtoo close to the vaporization point to make them usable for CVD transport. The metal is commonly produced by the decomposition of metallo-organic precur-... [Pg.164]

Rhodium is also produced by the decomposition of the carbonyl, Rii4(CO)i2, at temperatures above 95°C, the metal being deposited at approximately 250° C. [" 11" ]... [Pg.165]

The reaction of alkenes with alkenes or alkynes does not always produce an aromatic ring. An important variation of this reaction reacts dienes, diynes, or en-ynes with transition metals to form organometallic coordination complexes. In the presence of carbon monoxide, cyclopentenone derivatives are formed in what is known as the Pauson-Khand reaction The reaction involves (1) formation of a hexacarbonyldicobalt-alkyne complex and (2) decomposition of the complex in the presence of an alkene. A typical example Rhodium and tungsten ... [Pg.1091]

The role of the rhodium is probably two-fold. Initially due to its Lewis acidity it reversibly forms a complex with the nitrile nitriles are known to complex to the free axial coordination sites in rhodium(II) carboxylates as evidenced by the change of colour upon addition of a nitrile to a solution of rhodium(II) acetate, and by X-ray crystallography. Secondly the metal catalyses the decomposition of the diazocarbonyl compound to give a transient metallocarbene which reacts with the nitrile to give a nitrile ylide intermediate. Whether the nitrile ylide is metal bound or not is unclear. [Pg.14]

Similarly to Iridium and rhodium nanoparticle studies, Dupont describes benzene hydrogenation in various media by platinum(O) nanoparticles prepared by simple decomposition of Pt2(dba)3 in BMI PFe at 75 °C and under 4 bar H2 [68]. The Pt nanoparticles were isolated by centrifugation and char-... [Pg.268]

In the hydroformylation of lower alkenes using a modified cobalt catalyst complex separation is achieved by distillation. The ligands are high-boiling so that they remain with the heavy ends when these are removed from the alcohol product. Distillation is not possible when higher alcohols or aldehydes are produced, because of decomposition of the catalyst ligands at the higher temperatures required. Rhodium complexes can usually also be removed by distillation, since these complexes are relatively stable. [Pg.115]

In contrast to the intramolecular carbenoid C-H insertion, the inter-molecular version has not been greatly developed and has been for a long time regarded as a rather inefficient and unselective process. In this context, Davies and Hansen have developed asymmetric intermolecular carbenoid C H insertions catalysed by rhodium(II) (5 )-A-(p-dodecylphenyl)sulfonylprolinate. " Therefore, these catalysts were found to induce asymmetric induction in the decomposition of aryldiazoacetates performed in the presence of cycloalkanes,... [Pg.353]

Metal-Catalyzed. Cyclopropanation. Carbene addition reactions can be catalyzed by several transition metal complexes. Most of the synthetic work has been done using copper or rhodium complexes and we focus on these. The copper-catalyzed decomposition of diazo compounds is a useful reaction for formation of substituted cyclopropanes.188 The reaction has been carried out with several copper salts,189 and both Cu(I) and Cu(II) triflate are useful.190 Several Cu(II)salen complexes, such as the (V-f-butyl derivative, which is called Cu(TBS)2, have become popular catalysts.191... [Pg.921]

Maas and coworkers [199] showed that the rhodium(II)-catalyzed decomposition of vinyldiazoacetate 6/2-44 in the presence of semicydic enaminocarbonyl compounds 6/2-43 gives betaines as 6/2-45, with formation of a spiro compound as in-... [Pg.427]


See other pages where Rhodium decomposition is mentioned: [Pg.405]    [Pg.193]    [Pg.193]    [Pg.405]    [Pg.193]    [Pg.193]    [Pg.730]    [Pg.42]    [Pg.118]    [Pg.141]    [Pg.337]    [Pg.211]    [Pg.412]    [Pg.251]    [Pg.1086]    [Pg.1530]    [Pg.12]    [Pg.13]    [Pg.67]    [Pg.108]    [Pg.26]    [Pg.115]    [Pg.295]    [Pg.391]    [Pg.267]    [Pg.412]    [Pg.12]    [Pg.209]    [Pg.210]    [Pg.455]    [Pg.75]    [Pg.59]   


SEARCH



Rhodium carboxylates diazo compound decomposition catalysts

© 2024 chempedia.info