Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Retention in BeO and Mixed Be Materials

Of course, oxygen is not the only impurity that will react with beryllium. Another material that is important in forming mixed-material layers with beryllium is carbon. The saturated value of retention that has been found in beryllium surfaces exposed to a large deuterium ion fluence could easily be overshadowed if a carbon rich layer forms on the beryllium surface due to impurity carbon ions in the incident plasma flux. The hydrogen retention properties of plasma deposited carbon films has been shown to dominate the total retention in beryllium samples exposed to the plasma at lower temperature. Once the sample temperature during exposure approaches 500°C there is little difference between the retention in Be/C mixed-material layers compared to clean beryllium samples [48]. The temperature dependence of the retention of carbon containing mixed material layers, as well as that of clean beryllium surfaces is shown in Fig. 14.10. There are two possible explanations for the reduced retention in the mixed-material layers formed at elevated temperature. The first is that beryllium carbide forms more readily at elevated temperature and less retention is expected in beryllium carbide [11]. The second is that carbon films deposited at elevated temperature also tend to retain less hydrogen isotopes [49]. [Pg.350]

In the JET tokamak experience, it is more difficult to separate the retention effects due to different species. In general, regions of high deuterium and [Pg.350]


See other pages where Retention in BeO and Mixed Be Materials is mentioned: [Pg.349]   


SEARCH



And retention

Mixed materials

© 2024 chempedia.info