Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Restricted open-shell Hartree-Fock electron correlation methods

In this section, we briefly discuss some of the electronic structure methods which have been used in the calculations of the PE functions which are discussed in the following sections. There are variety of ab initio electronic structure methods which can be used for the calculation of the PE surface of the electronic ground state. Most widely used are Hartree-Fock (HF) based methods. In this approach, the electronic wavefunction of a closed-shell system is described by a determinant composed of restricted one-electron spin orbitals. The unrestricted HF (UHF) method can handle also open-shell electronic systems. The limitation of HF based methods is that they do not account for electron correlation effects. For the electronic ground state of closed-shell systems, electron correlation effects can be accounted for relatively easily by second-order Mpller-Plesset perturbation theory (MP2). In modern implementations of MP2, linear scaling with the size of the system has been achieved. It is thus possible to treat quite large molecules and clusters at this level of theory. [Pg.416]

The electronic structure methods are based primarily on two basic approximations (1) Born-Oppenheimer approximation that separates the nuclear motion from the electronic motion, and (2) Independent Particle approximation that allows one to describe the total electronic wavefunction in the form of one electron wavefunc-tions i.e. a Slater determinant [26], Together with electron spin, this is known as the Hartree-Fock (HF) approximation. The HF method can be of three types restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF) and restricted open Hartree-Fock (ROHF). In the RHF method, which is used for the singlet spin system, the same orbital spatial function is used for both electronic spins (a and (3). In the UHF method, electrons with a and (3 spins have different orbital spatial functions. However, this kind of wavefunction treatment yields an error known as spin contamination. In the case of ROHF method, for an open shell system paired electron spins have the same orbital spatial function. One of the shortcomings of the HF method is neglect of explicit electron correlation. Electron correlation is mainly caused by the instantaneous interaction between electrons which is not treated in an explicit way in the HF method. Therefore, several physical phenomena can not be explained using the HF method, for example, the dissociation of molecules. The deficiency of the HF method (RHF) at the dissociation limit of molecules can be partly overcome in the UHF method. However, for a satisfactory result, a method with electron correlation is necessary. [Pg.4]

A somewhat modified MO LCAO scheme, without restriction on the identity of spin orbitals (p and

unrestricted Hartree-Fock (UHF) method and is usually used to treat open-shell systems (free radicals, triplet states, etc.). Electron correlation is partially taken into account in this method, and therfore it can be expected to be more efficient than the RHF method when applied to calculate potential energy surfaces of chemical rearrangements whose intermediate or final stages may involve the formation of free- or bi-radical structures. The potentialities of the UHF method are now under active study in organic reaction calculations. Also, it is successfully coming into use in chemisorption computations (6). [Pg.136]

The few attempts at describing excited states in transition metal complexes within the Restricted Hartree Fock (RHF) formalism were rapidly abandoned due to the computational difficulties (convergence of the low-lying states in the open-shell formalism) and theoretical deficiencies (inherent lack of electronic correlation, inconsistent treatment of states of different multiplicities and d shell occupations). The simplest and most straightforward method to deal with correlation energy errors is the Configuration Interaction (Cl) approach where the single determinant HF wave function is extended to a wave function composed of a linear combination of many de-... [Pg.128]


See other pages where Restricted open-shell Hartree-Fock electron correlation methods is mentioned: [Pg.8]    [Pg.10]    [Pg.1173]    [Pg.14]    [Pg.2665]    [Pg.54]    [Pg.16]    [Pg.133]    [Pg.256]    [Pg.324]    [Pg.98]    [Pg.147]    [Pg.131]    [Pg.16]    [Pg.104]    [Pg.397]    [Pg.404]    [Pg.57]   
See also in sourсe #XX -- [ Pg.133 , Pg.150 , Pg.152 , Pg.176 ]




SEARCH



Correlated electrons

Correlation electron

Correlation methods

Correlative methods

Electron Methods

Electron correlation methods

Electronic correlations

Electronics shells

Hartree restricted

Hartree restricted open-shell

Hartree-Fock method

Open shell

Open-shell methods

Restricted Hartree-Fock method

Restricted Open-shell Hartree-Fock method

Restricted methods

Restricted open-shell Hartree-Fock

Restricted openings

© 2024 chempedia.info