Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation theory transition state

In spin relaxation theory (see, e.g., Zweers and Brom[1977]) this quantity is equal to the correlation time of two-level Zeeman system (r,). The states A and E have total spins of protons f and 2, respectively. The diagram of Zeeman splitting of the lowest tunneling AE octet n = 0 is shown in fig. 51. Since the spin wavefunction belongs to the same symmetry group as that of the hindered rotation, the spin and rotational states are fully correlated, and the transitions observed in the NMR spectra Am = + 1 and Am = 2 include, aside from the Zeeman frequencies, sidebands shifted by A. The special technique of dipole-dipole driven low-field NMR in the time and frequency domain [Weitenkamp et al. 1983 Clough et al. 1985] has allowed one to detect these sidebands directly. [Pg.116]

We have seen that in a steady field Hq a small excess, no, of nuclei are in the lower energy level. The absorption of rf energy reduces this excess by causing transitions to the upper spin state. This does not result in total depletion of the lower level, however, because this effect is opposed by spin-lattice relaxation. A steady state is reached in which a new steady value, n, of excess nuclei in the lower state is achieved. Evidently n can have a maximum value of o and a minimum value of zero. If n is zero, absorption of rf energy will cease, whereas if n = no, a steady-state absorption is observed. It is obviously desirable that the absorption be time independent or. in other words, that s/no be close to unity. Theory gives an expression for this ratio, which is called Zq, the saturation factor ... [Pg.159]

Another arena for the application of stochastic frictional approaches is the influence of ionic atmosphere relaxation on the rates of reactions in electrolyte solutions [19], To gain perspective on this, we first recall the early and often quoted triumph of TST for the prediction of salt effects, in connection with Debye-Hiickel theory, for reaction rates In kTST varies linearly with the square root of the solution ionic strength I, with a sign depending on whether the charge distribution of the transition state is stabilized or destabilized by the ionic atmosphere compared to the reactants. [Pg.251]

Koopmans s theorem is not valid for Xa calculations, but Slater s transition state concept applies. This approximation allows the interpretation of electronic transitions in terms of 1-electron orbitals and yet includes electronic relaxation effects (208). The virtual (unoccupied) orbitals of Xa theory have a physical significance and can be used to discuss excitations of the electronic system, because the same potential due to the iV - 1 other electrons affects both occupied and unoccupied... [Pg.8]

By marrying molecular dynamics to transition state theory, these questionable assumptions can be dispensed with, and one can simulate a relaxation process involving bottlenecks rigorously, assuming only 1) classical mechanics, and 2) local equilibrium within the reactant and product zones separately. For simplicity we will first treat a situation in which there is only one bottleneck, whose location is known. Later, we will consider processes involving many bottlenecks, and will discuss computer-assisted heuristic methods for finding bottlenecks when their locations are not known a priori. [Pg.74]

These relaxation times correspond to rates which are about 106 slower than the thermal vibrational frequency of 6 x 1012 sec 1 (kBT/h) obtained from transition state theory. The question arises how much, if any, of this free energy of activation barrier is due to the spin-forbidden nature of the AS = 2 transition. This question is equivalent to evaluating the transmission coefficient, k, that is, to assess quantitatively whether the process is adiabatic or nonadiabatic. [Pg.40]

The water-promoted hydrolyses of a bicyclic amide, l-azabicyclo[2.2.2]octan-2-one (87), and a planar analogue, l,4-dimethylpiperidin-2-one (88), were studied using density functional theory in conjunction with a continuum dielectric method to introduce bulk solvent effects. The aim of these studies was to reveal how the twisting of the C-N bond affects the neutral hydrolysis of amides. The results predict important rate accelerations of the neutral hydrolysis of amides when the C-N bond is highly twisted, the corresponding barrier relaxation depending on the specific reaction pathway and transition state involved.85... [Pg.72]

In contrast, conventional reaction rate theory replaces the dynamics within the potential well by fluctuations at equilibrium. This replacement is made possible by the assumption of local equilibrium, in which the characteristic time scale of vibrational relaxation is supposed to be much shorter than that of reaction. Furthermore, it is supposed that the phase space within the potential well is uniformly covered by chaotic motions. Thus, only information concerning the saddle regions of the potential is taken into account in considering the reaction dynamics. This approach is called the transition state theory. [Pg.554]

This equilibrium hypothesis is, however, not necessarily valid for rapid chemical reactions. This brings us to the second way in which solvents can influence reaction rates, namely through dynamic or frictional effects. For broad-barrier reactions in strongly dipolar, slowly relaxing solvents, non-equilibrium solvation of the activated complex can occur and the solvent reorientation may also influence the reaction rate. In the case of slow solvent relaxation, significant dynamic contributions to the experimentally determined activation parameters, which are completely absent in conventional transition-state theory, can exist. In the extreme case, solvent reorientation becomes rate-limiting and the transition-state theory breaks down. In this situation, rate con-... [Pg.148]

The effective time of such a relaxation is much higher than the rotation time of solvent dipoles. In the frame work of the transition state theory, when the inner-sphere reorganization can be neglected, v is related to the rotation time of solvent molecules in the dielectric medium, 1 1. by... [Pg.245]

As illustrated in the previous section, the kinetics associated with an ET process may be complex when diffusion or relaxation processes create dynamic bottlenecks. In limiting cases, however, a simple model based on transition state theory (TST) suffices. According to TST, the system maintains thermal equilibrium between different positions along the reaction coordinate [87]. We consider the TST rate constant for electron transfer after some preliminary comments about state manifolds and energetics. [Pg.88]


See other pages where Relaxation theory transition state is mentioned: [Pg.2271]    [Pg.329]    [Pg.346]    [Pg.10]    [Pg.102]    [Pg.902]    [Pg.20]    [Pg.213]    [Pg.194]    [Pg.231]    [Pg.12]    [Pg.376]    [Pg.286]    [Pg.73]    [Pg.100]    [Pg.264]    [Pg.391]    [Pg.160]    [Pg.7]    [Pg.468]    [Pg.10]    [Pg.347]    [Pg.47]    [Pg.94]    [Pg.148]    [Pg.149]    [Pg.151]    [Pg.217]    [Pg.356]    [Pg.235]    [Pg.174]    [Pg.910]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Relaxation theory

Relaxation transition

Relaxed state

© 2024 chempedia.info