Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refraction parameter

BioByte product offerings are diverse, easy to learn, yet powerful software packages for researchers, academics, and students. BioLoom, their next generation ClogP package, calculates hydrophobic and molecular refractivity parameters, but now is linked to their database which includes over 60,000 measured log P values, as well as 14,000 pKa s. A demo version is available for download. [Pg.71]

Nadareishvili L., Lekishvili N., Japaridze K., Khananashvili L. / Polymer media with gradient of refraction parameter // Russian Polymer News. 1997, vol.2, No3. pp. 30-35. [Pg.111]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

Solvent Boiling point, °C Solvent strength parameter Viscosity, mN s m (20°C) Refractive index (20°C) UV cutoff, nm... [Pg.1094]

Equations (10.17) and (10.18) show that both the relative dielectric constant and the refractive index of a substance are measurable properties of matter that quantify the interaction between matter and electric fields of whatever origin. The polarizability is the molecular parameter which is pertinent to this interaction. We shall see in the next section that a also plays an important role in the theory of light scattering. The following example illustrates the use of Eq. (10.17) to evaluate a and considers one aspect of the applicability of this quantity to light scattering. [Pg.669]

Optical. The optical properties of fillers and the influence that fillers have on the optical properties of filled systems are often misunderstood. The key parameters in understanding the optical properties of fillers themselves are filler psd, color, and index of refraction. These characteristics influence the optical properties of filled composition, such as color, brightness, opacity, hiding power, and gloss. [Pg.367]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
In methacrylic ester polymers, the glass-transition temperature, is influenced primarily by the nature of the alcohol group as can be seen in Table 1. Below the the polymers are hard, brittle, and glass-like above the they are relatively soft, flexible, and mbbery. At even higher temperatures, depending on molecular weight, they flow and are tacky. Table 1 also contains typical values for the density, solubiHty parameter, and refractive index for various methacrylic homopolymers. [Pg.259]

Polymer CAS Registry Number L Density at 20°C,K/cm" SolubiHty parameter Refractive index,... [Pg.259]

Additions to the PLM include monochromatic filters or a monochromator to obtain dispersion data (eg, the variation in refractive index with wavelength). By the middle of the twentieth century, ultraviolet and infrared radiation were used to increase the identification parameters. In 1995 the FTIR microscope gives a view of the sample and an infrared absorption pattern on selected 100-p.m areas (about 2—5-ng samples) (37). [Pg.334]

Compound CAS Registry Number Boiling point, °C Density at 20°C, g/cm Dipole moment, 10-"° Cm Index of refraction, < PR nmr Parameters chemical t shift, ppm ... [Pg.378]

Parachor is the name (199) of a temperature-independent parameter to be used in calculating physical properties. Parachor is a function of Hquid density, vapor density, and surface tension, and can be estimated from stmctural information. Critical constants for about 100 organic substances have been correlated to a set of equations involving parachors and molar refraction (200). [Pg.253]

There are a number of applieations such as bottle and film where tough materials of high elarity are desired. The advent of MBS material has been a significant advance to meet the requirements. It has been found possible here to produce an additive with sufficiently different solubility parameters from the PVC for it to exist in the disperse phase but with a very similar refractive index to the PVC so that light scattering at the interface between the two phases is at a minimum. However, owing to differences in the formulation of PVC compounds, a particular MBS modifier may not have exactly the same refractive index as the PVC eompound. [Pg.341]


See other pages where Refraction parameter is mentioned: [Pg.443]    [Pg.415]    [Pg.376]    [Pg.33]    [Pg.51]    [Pg.199]    [Pg.87]    [Pg.80]    [Pg.86]    [Pg.443]    [Pg.415]    [Pg.376]    [Pg.33]    [Pg.51]    [Pg.199]    [Pg.87]    [Pg.80]    [Pg.86]    [Pg.1878]    [Pg.1878]    [Pg.1884]    [Pg.1884]    [Pg.2838]    [Pg.3018]    [Pg.723]    [Pg.723]    [Pg.327]    [Pg.203]    [Pg.10]    [Pg.131]    [Pg.191]    [Pg.333]    [Pg.334]    [Pg.127]    [Pg.134]    [Pg.419]    [Pg.246]    [Pg.327]    [Pg.598]    [Pg.359]    [Pg.127]    [Pg.906]    [Pg.362]    [Pg.445]    [Pg.112]    [Pg.67]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



© 2024 chempedia.info