Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductions butyllithium

Kyba and eoworkers prepared the similar, but not identical compound, 26, using quite a different approach. In this synthesis, pentaphenylcyclopentaphosphine (22) is converted into benzotriphosphole (23) by reduction with potassium metal in THF, followed by treatment with o "t/20-dichlorobenzene. Lithium aluminum hydride reduction of 23 affords l,2-i>/s(phenylphosphino)benzene, 24. The secondary phosphine may be deprotonated with n-butyllithium and alkylated with 3-chlorobromopropane. The twoarmed bis-phosphine (25) which results may be treated with the dianion of 24 at high dilution to yield macrocycle 26. The overall yield of 26 is about 4%. The synthetic approach is illustrated in Eq. (6.16), below. [Pg.274]

Alteration of the relative reactivity of the ring-positions of quinoline is expected and observed when cyclic transition states can intervene. Quinoline plus phenylmagnesium bromide (Et20,150°, 3 hr) produces the 2-phenyl derivative (66% yield) phenyllithium gives predominantly the same product along with a little of the 4-phenylation product. Reaction of butyllithium (Et 0, —35°, 15 min) forms 2-butylquinoline directly in 94% yield. 2-Aryl- or 6-methoxy-quinolines give addition at the 2-position with aryllithium re-agents, and reaction there is so favored that appreciable substitution (35%) takes place at the 2-position even in the 4-chloroquinoline 414. Hydride reduction at the 2-position of quinoline predominates. Reaction of amide ion at the 2-position via a cyclic... [Pg.365]

Metalated epoxides can react with organometallics to give olefins after elimination of dimetal oxide, a process often referred to as reductive alkylation (Path B, Scheme 5.2). Crandall and Lin first described this reaction in their seminal paper in 1967 treatment of tert-butyloxirane 106 with 3 equiv. of tert-butyllithium, for example, gave trans-di-tert-butylethylene 110 in 64% yield (Scheme 5.23), Stating that this reaction should have some synthetic potential , [36] they proposed a reaction pathway in which tert-butyllithium reacted with a-lithiooxycarbene 108 to generate dianion 109 and thence olefin 110 upon elimination of dilithium oxide. The epoxide has, in effect, acted as a vinyl cation equivalent. [Pg.157]

Using oxathiane 11, ( + )-(i )-2-methoxy-2-phenylpropanoic acid was obtained in 97% ee, however, the synthesis contains some inconvenient reaction steps. Thus, reduction of ( + )-10-camphorsulfonic acid (8) leads in low yield to a mixture of 10-mercaptoisoborneol (9 A) and 10-mercaptoborneol (9B) which must be separated by chromatography. The oxathiane 10 resists deprotonation with butyllithium and, therefore,, y -butyllithium had to be employed. Furthermore, after addition of methylmagnesium iodide, cleavage of the oxathiane moiety 12, with iodomethane did not proceed as well as with the simpler oxathianes 3. [Pg.111]

Metalation ofa-sulfinyl dimethylhydrazones with terf-butylmagnesium bromide, butyllithium or lithium diisopropylamide, and reaction of the generated azaenolates with aldehydes, provides aldol adducts (e.g., 6) as mixtures of diastereomers. Reductive desulfurization leads to fi-hydroxy dimethylhydrazones (e.g., 7) which are cleaved to the desired /(-hydroxy ketones in 25% overall yield10 u. The enantiomeric excesses are about 50%, except for (- )-3-hydroxy-4-methyl-1-phenyl-1-pentanone (8) which was obtained in 88% ee. [Pg.604]

Of some relevance in this connection is a study216 on the structure of the anion radicals formed when diaryl sulphones react with n-butyllithium in hexane-HMPA solution under an argon atmosphere. Apparently, a dehydrogenative cyclization and a further one-electron reduction occurs to produce the anion radicals of substituted dibenzothiophene-S, S-dioxides. These anion radicals were studied by ESR spectroscopy. [Pg.963]

A companion reagent to the ylide is the corresponding metalated sulfide 30 which arises by the lithiation of 29 with n-butyllithium 66). The latter forms by base closure of 28. Since closure of 28 b involves use of n-butyllithium, the cyclopropyl sulfide 29 simply becomes an intermediate which is metalated in situ to give 30 directly67). A non-metalation sequence involves 32 which undergoes reductive... [Pg.33]

Recently, Schaumann et al. 153,154 an(j Bienz et tf/.155,156 have developed dependable routes for the resolution of racemic functionalized organosilanes with Si-centered chirality using chiral auxiliaries, such as binaphthol (BINOL), 2-aminobutanol, and phenylethane-l,2-diol (Scheme 2). For instance, the successive reaction of BINOL with butyllithium and the chiral triorganochlorosilanes RPhMeSiCl (R = /-Pr, -Bu, /-Bu) affords the BINOL monosilyl ethers 9-11, which can be resolved into the pure enantiomers (A)-9-ll and (7 )-9-11, respectively. Reduction with LiAlFF produces the enantiomerically pure triorgano-H-silanes (A)- and (R)-RPhMeSiH (12, R = /-Pr 13, -Bu 14, /-Bu), respectively (Scheme 2). Tamao et al. have used chiral amines to prepare optically active organosilanes.157... [Pg.411]

Metallation of dibenzothiophene 5-oxide with three equivalents of butyllithium followed by carbonation gave a mixture of 4-dibenzo-thiophene carboxylic acid (36 /o) and dibenzothiophene (10%). The reduction or even elimination of sulfoxide groups in the presence of... [Pg.282]

A 1 1 mixture of (Z)- and ( )-tetramethylbicyclopropylidenes 24b,c was obtained by dihalocyclopropanation of dimethyl(dimethylethenylidene)cyclopro-pane 27 [45,46] followed by reduction of the adducts with sodium in methanol (Scheme 6). Addition of monochlorocarbene onto 2-(trimethylsilyl)-l-ethenyl-idenecyclopropane (29) proceeds with low diastereo- and regioselectivity to give a mixture of bicyclopropylidene and methylenespiropentane derivatives 30, 31 in poor yield [47]. Upon treatment of l,l-dibromo-2-methylpropene (36) with butyllithium at -110°C the unique diisopropylidenetetramethylbicyclo-propylidene 37 was formed by addition of isobutylidene to in situ generated tetramethylbutatriene (32), albeit in very low yield [48] (Scheme 7). [Pg.98]

Finally, a reaction that clearly shows the electrophihc carbenoid-type character of a-lithiated epoxides is the reductive alkylation discovered by CrandaU and Apparu. The transformation is illustrated by the treatment of f-butyl ethylene oxide with t-butyllithium to yield ii-di-f-butylethene (equation 55). The overall reaction results in a conversion of an oxirane into an aUcene under simultaneous substitution of an a-hydrogen atom by the alkyllithium reagent ... [Pg.870]

The dibromoalkene S-40 can be prepared from S-ethyl lactate by introduction of the MEM (methoxyethoxymethyl) protecting group, reduction to the O-protected lactaldehyde and Corey-Fuchs carbonyl olefination (Scheme 19). The l -enantiomer of 40 is available analogously from f -isobutyl lactate and serves as the reagent in the enantiomeric series. The lithium carbenoid S-41 is generated from S-40 by treatment with n-butyllithium in diethyl ether and reacted with aliphatic and aromatic aldehydes in tetrahydrofuran. High diastereoselectivities are reached, as shown in Scheme 19 . ... [Pg.878]


See other pages where Reductions butyllithium is mentioned: [Pg.152]    [Pg.794]    [Pg.895]    [Pg.79]    [Pg.161]    [Pg.729]    [Pg.14]    [Pg.693]    [Pg.9]    [Pg.94]    [Pg.58]    [Pg.693]    [Pg.339]    [Pg.19]    [Pg.115]    [Pg.107]    [Pg.381]    [Pg.421]    [Pg.88]    [Pg.240]    [Pg.418]    [Pg.436]    [Pg.443]    [Pg.105]    [Pg.115]    [Pg.536]    [Pg.56]    [Pg.11]    [Pg.38]    [Pg.242]    [Pg.83]    [Pg.325]    [Pg.927]    [Pg.1509]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Butyllithium

Butyllithiums

Phosphorous acid, bis butyllithium epoxide reduction

© 2024 chempedia.info