Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction in carbonylation

The addition of CaCO, to PP causes a slight reduction in carbonyl formation. The efficiency of some antioxidants, such as Irganox 1010, was found to be reduced by the presence of CaCO,. In another study, PP stability was increased by the addition of CaCO, especially in combination with small addition of TiO, (0.5%) or HALS. In polyurethanes, CaCO, acts as a heat sink. ... [Pg.509]

The disadvantages associated with the Clemmensen reduction of carbonyl compounds (see 3 above), viz., (a) the production of small amounts of carbinols and unsaturated compounds as by-products, (h) the poor results obtained with many compounds of high molecular weight, (c) the non-appUcability to furan and pyrrole compounds (owing to their sensitivity to acids), and (d) the sensitivity to steric hindrance, are absent in the modified Wolff-Kishner reduction. [Pg.511]

The role of specific interactions in the plasticization of PVC has been proposed from work on specific interactions of esters in solvents (eg, hydrogenated chlorocarbons) (13), work on blends of polyesters with PVC (14—19), and work on plasticized PVC itself (20—23). Modes of iateraction between the carbonyl functionaHty of the plasticizer ester or polyester were proposed, mostly on the basis of results from Fourier transform infrared spectroscopy (ftir). Shifts in the absorption frequency of the carbonyl group of the plasticizer ester to lower wave number, indicative of a reduction in polarity (ie, some iateraction between this functionaHty and the polymer) have been reported (20—22). Work performed with dibutyl phthalate (22) suggests an optimum concentration at which such iateractions are maximized. Spectral shifts are in the range 3—8 cm . Similar shifts have also been reported in blends of PVC with polyesters (14—20), again showing a concentration dependence of the shift to lower wave number of the ester carbonyl absorption frequency. [Pg.124]

Two classes of charged radicals derived from ketones have been well studied. Ketyls are radical anions formed by one-electron reduction of carbonyl compounds. The formation of the benzophenone radical anion by reduction with sodium metal is an example. This radical anion is deep blue in color and is veiy reactive toward both oxygen and protons. Many detailed studies on the structure and spectral properties of this and related radical anions have been carried out. A common chemical reaction of the ketyl radicals is coupling to form a diamagnetic dianion. This occurs reversibly for simple aromatic ketyls. The dimerization is promoted by protonation of one or both of the ketyls because the electrostatic repulsion is then removed. The coupling process leads to reductive dimerization of carbonyl compounds, a reaction that will be discussed in detail in Section 5.5.3 of Part B. [Pg.681]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

Many biological processes involve oxidation of alcohols to carbonyl compounds or the reverse process, reduction of carbonyl compounds to alcohols. Ethanol, for example, is metabolized in the liver to acetaldehyde. Such processes are catalyzed by enzymes the enzyme that catalyzes the oxidation of ethanol is called alcohol dehydrogenase. [Pg.645]

A variety of catalysts including copper, nickel, cobalt, and the platinum metals group have been used successfully in carbonyl reduction. Palladium, an excellent catalyst for hydrogenation of aromatic carbonyls is relatively ineffective for aliphatic carbonyls this latter group has a low strength of adsorption on palladium relative to other metals (72,91). Nonetheless, palladium can be used very well with aliphatic carbonyls with sufficient patience, as illustrated by the difficult-to-reduce vinylogous amide I to 2 (9). [Pg.66]

Solvents have a marked effect on the rate of reduction of carbonyls (J6), in... [Pg.67]

As with the reduction of carbonyl compounds discussed in the previous section, we ll defer a detailed treatment of the mechanism of Grignard reactions until Chapter 19. For the moment, it s sufficient to note that Grignard reagents act as nucleophilic carbon anions, or carbanions ( R ), and that the addition of a Grignard reagent to a carbonyl compound is analogous to the addition of hydride ion. The intermediate is an alkoxide ion, which is protonated by addition of F O"1 in a second step. [Pg.615]

The mechanism of ester (and lactone) reduction is similar to that of acid chloride reduction in that a hydride ion first adds to the carbonyl group, followed by elimination of alkoxide ion to yield an aldehyde. Further reduction of the aldehyde gives the primary alcohol. [Pg.812]

The final stages of the successful drive towards amphotericin B (1) are presented in Scheme 19. Thus, compound 9 is obtained stereoselectively by sodium borohydride reduction of heptaenone 6a as previously described. The formation of the desired glycosida-tion product 81 could be achieved in dilute hexane solution in the presence of a catalytic amount PPTS. The by-product ortho ester 85 was also obtained in approximately an equimolar amount. Deacetylation of 81 at C-2, followed sequentially by oxidation and reduction leads, stereoselectively, to the desired hydroxy compound 83 via ketone 82. The configuration of each of the two hydroxylbearing stereocenters generated by reduction of carbonyls as shown in Scheme 19 (6—>9 and 82->83) were confirmed by conversion of 83 to amphotericin B derivative 5 and comparison with an... [Pg.446]

The dynamic resolution of an aldehyde is shown in Figure 8.40. The racemization of starting aldehyde and enantioselective reduction of carbonyl group by baker s yeast resulted in the formation of chiral carbon centers. The enantiomeric excess value of the product was improved from 19 to 90% by changing the ester moiety from the isopropyl group to the neopentyl group [30a]. [Pg.223]


See other pages where Reduction in carbonylation is mentioned: [Pg.355]    [Pg.50]    [Pg.162]    [Pg.355]    [Pg.50]    [Pg.162]    [Pg.2783]    [Pg.106]    [Pg.113]    [Pg.63]    [Pg.287]    [Pg.470]    [Pg.46]    [Pg.68]    [Pg.134]    [Pg.162]    [Pg.47]    [Pg.101]    [Pg.17]    [Pg.329]    [Pg.671]    [Pg.108]    [Pg.448]    [Pg.638]    [Pg.190]    [Pg.933]    [Pg.951]    [Pg.951]    [Pg.132]    [Pg.144]    [Pg.193]    [Pg.213]    [Pg.224]    [Pg.1207]    [Pg.1547]    [Pg.361]    [Pg.289]   
See also in sourсe #XX -- [ Pg.6 , Pg.281 ]




SEARCH



Carbonyl reduction

Reduction carbonylation

Reduction of Metal Carbonyls with Alkali Metals and Sodium Tetrahydridoborate in Liquid Ammonia

Selective reduction of carbonyl group in

Selectivity in the Reduction of Carbonyl Derivatives Containing a Chiral Carbon

The Role of Proximal, Lewis Basic Functional Groups in Carbonyl Reduction

Topic 2.4. Polar Substituent Effects in Reduction of Carbonyl Compounds

© 2024 chempedia.info