Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction bond formations, reductive

Symmetrical diols can be made by a radical reaction. Radical reactions are rarely much use in carbon-carbon bond formation as they often give poor yields and many products They are of course useful in some FGl reactions in things hke altylic bromination and in functionahsing remote carbon atoms. If rou want to read more about this see Tedder, Part 2, Chapter 11 or Carruthers, Chapter 4. One useful radical reaction is the prnacol reduction ... [Pg.49]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

The preparation of amines by the methods described m this section involves the prior synthesis and isolation of some reducible material that has a carbon-nitrogen bond an azide a nitrile a nitro substituted arene or an amide The following section describes a method that combines the two steps of carbon-nitrogen bond formation and reduction into a single operation Like the reduction of amides it offers the possibility of prepar mg primary secondary or tertiary amines by proper choice of starting materials... [Pg.934]

This group was developed for the protection of primary amides of amino acids. It is introduced by amide bond formation with the benzhydrylamine. It is cleaved with 1 MSiCl4/anisole/TFA/0° or 1 MTMSOTf/thioanisole/TFA, 0°. Cleavage occurs by initial sulfoxide reduction followed by acidolysis. ... [Pg.642]

Reduction (Sections 7.7, 10.9) A reaction that causes an increase of electron ownership by carbon, either by bondbreaking between carbon and a more electronegative atom or by bond formation between carbon and a less electronegative atom. [Pg.1249]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]

There are other reactions apart from NADH reduction (Sect 4.1) where the hydride equivalent shifts between electron donors and acceptors without bond formation between the n bonds. The hydride equivalent transfer must be reactions in the transfer band. In fact, a photochemical reaction between donors and acceptors is similar to thermal reactions between strong donors and acceptors. This further supports the mechanistic spectrum (Scheme 32). [Pg.53]

With radicals of the benzyl type, 11 through 18, the dimerization equilibrium depends on the relative magnitudes of the energy gain arising from the C-C bond formation and of the ir-electron energy loss which results from a reduction of the conjugated system. [Pg.366]

The enantioselective 1,4-addition addition of organometaUic reagents to a,p-unsaturated carbonyl compounds, the so-called Michael reaction, provides a powerful method for the synthesis of optically active compounds by carbon-carbon bond formation [129]. Therefore, symmetrical and unsymmetrical MiniPHOS phosphines were used for in situ preparation of copper-catalysts, and employed in an optimization study on Cu(I)-catalyzed Michael reactions of di-ethylzinc to a, -unsaturated ketones (Scheme 31) [29,30]. In most cases, complete conversion and good enantioselectivity were obtained and no 1,2-addition product was detected, showing complete regioselectivity. Of interest, the enantioselectivity observed using Cu(I) directly in place of Cu(II) allowed enhanced enantioselectivity, implying that the chiral environment of the Cu(I) complex produced by in situ reduction of Cu(II) may be less selective than the one with preformed Cu(I). [Pg.36]

Fig. 8 Reactions of various carbocations with Kuhn s anion [2 ] as compared with their reduction potentials (peak potentials measured vs. Ag/Ag in acetonitrile by cyclic voltammetry cf. Tables 1 and 8 and Okamoto et al., 1983). SALT, salt formation COV, covalent bond formation ET, single-electron transfer. [Pg.215]

As the cation becomes progressively more reluctant to be reduced than [53 ], covalent bond formation is observed instead of electron transfer. Further stabilization of the cation causes formation of an ionic bond, i.e. salt formation. Thus, the course of the reaction is controlled by the electron affinity of the carbocation. However, the change from single-electron transfer to salt formation is not straightforward. As has been discussed in previous sections, steric effects are another important factor in controlling the formation of hydrocarbon salts. The significant difference in the reduction potential at which a covalent bond is switched to an ionic one -around -0.8 V for tropylium ion series and —1.6 V in the case of l-aryl-2,3-dicyclopropylcyclopropenylium ion series - may be attributed to steric factors. [Pg.216]

Catalytic transformations can be divided on the basis of the catalyst-type - homogeneous, heterogeneous or enzymatic - or the type of conversion. We have opted for a compromise a division based partly on type of conversion (reduction, oxidation and C-C bond formation, and partly on catalyst type (solid acids and bases, and biocatalysts). Finally, enantioselective catalysis is a recurring theme in fine chemicals manufacture, e.g. in the production of pharmaceutical intermediates, and a separate section is devoted to this topic. [Pg.30]

Pd, or Ni (Scheme 5-3). First, P-H oxidative addition of PH3 or hydroxymethyl-substituted derivatives gives a phosphido hydride complex. P-C bond formation was then suggested to occur in two possible pathways. In one, formaldehyde insertion into the M-H bond gives a hydroxymethyl complex, which undergoes P-C reductive elimination to give the product. Alternatively, nucleophilic attack of the phosphido group on formaldehyde gives a zwitterionic species, followed by proton transfer to form the O-H bond [7]. [Pg.145]


See other pages where Reduction bond formations, reductive is mentioned: [Pg.335]    [Pg.335]    [Pg.209]    [Pg.934]    [Pg.176]    [Pg.28]    [Pg.393]    [Pg.68]    [Pg.294]    [Pg.934]    [Pg.226]    [Pg.137]    [Pg.290]    [Pg.61]    [Pg.229]    [Pg.233]    [Pg.348]    [Pg.353]    [Pg.621]    [Pg.295]    [Pg.137]    [Pg.196]    [Pg.543]    [Pg.627]    [Pg.1627]    [Pg.323]    [Pg.92]    [Pg.325]    [Pg.881]    [Pg.166]    [Pg.480]    [Pg.43]    [Pg.196]    [Pg.543]    [Pg.627]   
See also in sourсe #XX -- [ Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 ]




SEARCH



Bonds reduction

Formate reductant

Formates reduction

Reduction formation

© 2024 chempedia.info