Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox titrants cerium

Redox titrants (mainly in acetic acid) are bromine, iodine monochloride, chlorine dioxide, iodine (for Karl Fischer reagent based on a methanolic solution of iodine and S02 with pyridine, and the alternatives, methyl-Cellosolve instead of methanol, or sodium acetate instead of pyridine (see pp. 204-205), and other oxidants, mostly compounds of metals of high valency such as potassium permanganate, chromic acid, lead(IV) or mercury(II) acetate or cerium(IV) salts reductants include sodium dithionate, pyrocatechol and oxalic acid, and compounds of metals at low valency such as iron(II) perchlorate, tin(II) chloride, vanadyl acetate, arsenic(IV) or titanium(III) chloride and chromium(II) chloride. [Pg.297]

As a result, the electromotive force (EMF) of the cell is zero In the presence of fluoride ions, cerium(IV) forms a complex with fluoride ions that lowers the cerium(IV)-cerium(IIl) redox potential The inner half-cell is smaller, and so only 5 mL of cerium(IV)-cenum (III) solution is added To the external half-cell, 50 mL of the solution is added, but the EMF of the cell is still zero When 10 mL of the unknown fluonde solution is added to the inner half-cell, 100 mL of distilled water IS added to the external half-cell The solution in the external half-cell is mixed thoroughly by turning on the stirrer, and 0 5 M sodium fluonde solution is added from the microburet until the null point is reached The quantity of known fluonde m the titrant will be 10 times the quantity of the unknown fluoride sample, and so the microburet readings must be corrected prior to actual calculations... [Pg.1026]

The data in the third column of Table 19-2 are plotted as curve B in Figure 19-3 to compare the two titrations. The two curves are identical for volumes greater than 25.10 mL because the concentrati ons of the two cerium species are identical in this region. It is also interesting that the curve for iron(Il) is symmetric around the equivalence point, but the curve for uranium(IV) is not. In general, redox titration curves are symmetric when the analyte and titrant react in a 1 1 molar ratio. [Pg.544]

In analytical chemistry, a redox titration is based on an oxidation-reduction reaction between analyte and titrant. Common analytical oxidants include iodine (I2), permanganate (MnOJ), cerium(IV), and dichromate (Cr207 ). Titrations with reducing agents such as Fe " (ferrous ion) and Sn " (stannous ion) are less common because solutions of most reducing agents need protection from air to prevent reaction with O2. [Pg.351]


See other pages where Redox titrants cerium is mentioned: [Pg.294]    [Pg.302]    [Pg.286]    [Pg.287]    [Pg.288]    [Pg.289]   
See also in sourсe #XX -- [ Pg.430 ]




SEARCH



Titrant

Titrants

© 2024 chempedia.info