Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rearrangement reactions prototropic

Research into the mechanism of diazotization was based on Bamberger s supposition (1894 b) that the reaction corresponds to the formation of A-nitroso-A-alkyl-arylamines. The TV-nitrosation of secondary amines finishes at the nitrosoamine stage (because protolysis is not possible), but primary nitrosoamines are quickly transformed into diazo compounds in a moderately to strongly acidic medium. The process probably takes place by a prototropic rearrangement to the diazohydroxide, which is then attacked by a hydroxonium ion to yield the diazonium salt (Scheme 3-1 see also Sec. 3.4). [Pg.39]

The stereochemistry of dienes has been found to have a pronounced effect in the concerted cyclo-additions with benzyne 64>65h A concerted disrotatory cyclo-addition of tetrafluorobenzyne, leading for example with trans- (3-methylstyrene to (63, R = Me), is likely and in accord with the conservation of orbital symmetry 68>. However while the electro-cyclic rearrangement of (63, R = H) to (65, R = H) is not allowed, base catalysed prototropic rearrangement is possible. A carbanion (64, R = H) cannot have more than a transient existence in the reaction of tetrafluorobenzyne with styrene because no deuterium incorporation in (65) was detected when either the reaction mixture was quenched with deuterium oxide or when the reaction was conducted in the presence of a ten molar excess of deuteriopentafluorobenzene. [Pg.56]

Reactions of arylsulfonylallenes with 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide (227) proceed in a manner similar to that of the above-mentioned sulfides. Probably, both 4- and 5-alkylidene-4,5-dihydroisoxazole cycloadducts are initially formed which then undergo different transformations. 4-Alkylidene isomers give spiro adducts such as 60 with an additional molecule of nitrile oxide, while 5-isomers convert to isoxazoles 61, products of their prototropic rearrangement. [Pg.29]

For stannanes, there exists one example of a rearrangement (133 —> 134) which at first sight resembles a prototropic rearrangement, but is in fact a radical chain reaction [341] (Scheme 1.59). [Pg.25]

After the prototropic isomerizations, these rearrangements are the second most important synthetic methodology. In the concerted reactions a highly selective central to axial chirality transfer is possible, but this has already been exploited before the timeframe covered by this review and has been summarized [378]. [Pg.27]

There exist early examples of this transformation [507, 508], but due to the symmetric structure of the alkene part, only isotope labeling, etc., allowed the exclusion of a prototropic rearrangement. Furthermore, due to the high reaction temperatures of 340 °C and above, several different products are formed. A low-temperature version (77 K) of this reaction via the radical cation has been reported [509]. The chirality transfer has been studied and a detailed mechanistic investigation has been conducted [510] typical experiments in that context were the reactions of substrates such as 155 and 157 (Scheme 1.70). [Pg.29]

Quaternary allenylallylammonium salts, produced in situ by prototropic isomerization of propargyl precursors (see Section 7.2.2), can undergo a 3-aza-Cope rearrangement [370]. The resulting intermediates are hydrolyzed under the reaction conditions to yield 2 -methylenepent-4-enals. [Pg.413]

Treatment of the propargylic alcohol 144, readily prepared from condensation between benzophenone (143) and the lithium acetylide 101, with thionyl chloride promoted a sequence of reactions with an initial formation of the chlorosulfite 145 followed by an SNi reaction to produce in situ the chlorinated and the benzannulated enyne-allene 146 (Scheme 20.30) [62], A spontaneous Schmittel cyclization then generated the biradical 147, which in turn underwent a radical-radical coupling to form the formal [4+ 2]-cycloaddition product 148 and subsequently, after a prototropic rearrangement, 149. The chloride 149 is prone to hydrolysis to give the corresponding 11 H-bcnzo h fluoren-ll-ol 150 in 85% overall yield from 144. Several other llff-benzo[fc]fluoren-ll-ols were likewise synthesized from benzophenone derivatives. [Pg.1110]

While at Leeds from 1924 to 1930, Ingold s laboratory focused on three main topics of research (1) the nature and mechanism of orienting effects of groups in aromatic substitution (mainly nitration) (2) the study of prototropic rearrangements (shifts of H+) and aniontropic rearrangements (shifts of anions) as the ionic mechanisms of tautomerism and (3) the effect of polar substituents on the velocity and orientation of addition reactions to unsaturated systems. One of Ingold s students at Leeds, John William Baker, wrote a widely read book on tautomerism. 16... [Pg.218]

Scheme 7.19). Prototropic shift of the initial adduct to produce ROCHCl2 and, subsequently, the formate ester is a less favourable pathway. Alternatively, the carbon monoxide-separated ion-pair can lose a proton leading to an alkene, or cycloadducts derived from further reaction with the carbene. The formation of rearranged products from the reaction of 1 -hydroxymethyladamantane suggests that a relatively unencumbered carbenium cation can also be generated, which leads to a Nametkin rearrangement of the system [4]. [Pg.340]

This reaction, for which the term prototropic rearrangement is sometimes used, is an example of electrophilic substitution with accompanying allylic rearrangement. The mechanism involves abstraction by the base to give a resonance-stabilized carbanion, which then combines with a proton at the position that will give the more stable olefin 56... [Pg.582]

An interesting 1,3-chlorine shift reaction is reported to occur during the photochlorination of Ar-benzylperfluoroalkanimidoyl chlorides 39.27 Photochlorination of 39 gives a mixture of 40 and its isomer 41. which was interpreted as being caused by a 1,3-chlorotropic isomerization of 40 to 41. In the presence of triethylamine, the mixtures of 40 and 41 isomerize completely to 1,3-dichloride 42. which was explained as having resulted from an equilibrium between 40 and 41. via a reversible 1,3-chlorotropic shift, with 40 transformed completely by a base-catalyzed 1.3-prototropic rearrangement to isomer 42. [Pg.188]

Primary amines are oxidized to the corresponding oximes. The sequence of reactions closely parallels the sequence observed with other mono oxygen donors, i.e., oxidation to alkyl hydroxylamines (V) followed by oxidation to alkylnitroso compounds (VI) which, via a prototropic shift, rearrange to the oximes (VII) ... [Pg.315]

The details of protonation of several alkyl-substituted phenanthrenes by superacids have been reported.73 The observed mono- and di-cations are usually in agreement with those predicted by AMI MO calculations. Molecular modelling studies have suggested a multi-step pathway for the sulfonation of toluene widi sulfur trioxide.74 Intermediate 71-complcx. Wheland intermediate and pyrosulfonate species (34) are suggested, the product (p-toluenesulfonic acid) arising from an exothermic reaction between toluene and the acid (35) fonned by a facile prototropic rearrangement of (34). The sulfur trioxide monosulfonation of isopyrene and some derivatives leads usually to sulfonated... [Pg.267]


See other pages where Rearrangement reactions prototropic is mentioned: [Pg.312]    [Pg.325]    [Pg.140]    [Pg.173]    [Pg.276]    [Pg.623]    [Pg.4]    [Pg.623]    [Pg.367]    [Pg.312]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.377]    [Pg.390]    [Pg.399]    [Pg.1102]    [Pg.1123]    [Pg.1154]    [Pg.1157]    [Pg.1158]    [Pg.1160]    [Pg.1162]    [Pg.1164]    [Pg.157]    [Pg.198]    [Pg.537]    [Pg.198]    [Pg.4]    [Pg.537]    [Pg.312]    [Pg.2147]   
See also in sourсe #XX -- [ Pg.313 , Pg.314 ]




SEARCH



Prototropic

Prototropic rearrangements

© 2024 chempedia.info