Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Real versus Ideal Solution

In Section 1.13.3, we used the difference between the properties of a real fluid and an ideal gas to describe the effect of intermolecuiar forces on the thermodynamic properties of the fluid. Here we use the difference between real and ideal solution behavior of a fluid, at the same T, P and compositions, to describe the effect of the differences in  [Pg.17]

The comparison is done at the same temperature, pressure, and composition, and the resulting difference is called the excess Junction (Chapter 11)  [Pg.17]

Excess Function = Real solution property (7, P, x) -Ideal solution property (T, P, x) [Pg.17]


For an ideal solution, then, a plot of n,ic versus c should be a straight line at constant temperature. But, as you might expect, there is a variation with concentration (Figure 12-7). Just as with real gases, however, the data can be fit to the polynomial we call a virial equation. But, what do we do about polymers that have a distribution of molecular weights ... [Pg.363]

For ideal solutions the ratio ly p/c (called the reduced viscosity) is independent of solution concentration. In real solutions the reduced viscosity varies with concentration owing to molecular interactions and it is usual to extrapolate plots of j p/c versus c to zero concentration. The extrapolated value is called the intrinsic viscosity [jy]. [Pg.282]

Figure 9.7-3 Solute fugacity in real and ideal Henry s law solutions, (ri) Solute fugacity versus mole fraction. (b) Solute fugacity versus molality. Figure 9.7-3 Solute fugacity in real and ideal Henry s law solutions, (ri) Solute fugacity versus mole fraction. (b) Solute fugacity versus molality.
A Gaussian bandshape results when the partition coefficient, K (= Cs/Cm), is independent of the concentration of solute on the column. In real columns, K changes as the concentration of solute increases, and bandshapes are skewed.10 A graph of Cs versus Cm (at a given temperature) is called an isotherm. Three common isotherms and their resulting bandshapes are shown in Figure 23-20. The center isotherm is the ideal one, leading to a symmetric peak. [Pg.521]

Figure 39.2 The graphs show plots of (a) /r(i) Figure 39.2 The graphs show plots of (a) /r(i)<ideal liquid mixture) versus In X, (b) ji(i)<nal liquid mixture) versus In a. and (C) (i)Meal liquid mixture) anc (j)<reai liquid mixture) versus In x,. It should be noted that the values of In X and In a, are negative for values of Xi < 0 and a, < 0 and hence the origin appears on the right-hand side of the graphs. The graph (c) illustrates one interpretation of activity as being the value of x, which needs to be substituted into equation (39.1) in order to give the identical chemical potential value for the real solution but on the ideal curve.

See other pages where Real versus Ideal Solution is mentioned: [Pg.17]    [Pg.17]    [Pg.442]    [Pg.126]    [Pg.150]    [Pg.262]    [Pg.2369]    [Pg.294]    [Pg.26]   


SEARCH



Ideal Real Solutions

Ideal solution

Real solution

Solution ideal solutions

© 2024 chempedia.info