Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water formation reaction

Fig. 3-3. The reactions of formation and decomposition of water shown with molecular models. Fig. 3-3. The reactions of formation and decomposition of water shown with molecular models.
A mixture of water/pyridine appears to be the solvent of choice to aid carbenium ion formation [246]. In the Hofer-Moest reaction the formation of alcohols is optimized by adding alkali bicarbonates, sulfates [39] or perchlorates. In methanol solution the presence of a small amount of sodium perchlorate shifts the decarboxylation totally to the carbenium ion pathway [31]. The structure of the carboxylate can also support non-Kolbe electrolysis. By comparing the products of the electrolysis of different carboxylates with the ionization potentials of the corresponding radicals one can draw the conclusion that alkyl radicals with gas phase ionization potentials smaller than 8 e V should be oxidized to carbenium ions [8 c] in the course of Kolbe electrolysis. This gives some indication in which cases preferential carbenium ion formation or radical dimerization is to be expected. Thus a-alkyl, cycloalkyl [, ... [Pg.116]

The first step in sol-gel processing is the catalytic hydrolysis of TEOS and the second step is the polycondensation of SiOH moieties framing into silica (Scheme 3.1). In the first step of the reaction, water is present as a reactant while it is the by-product in the second step. It is likely that the molar ratio of TEOS/H2O would influence the sol-gel chemistry and hence the end properties of the resultant hybrids. The most interesting part of the sol-gel chemistry is that the catalytic hydrolysis of TEOS is an ion-controlled reaction, while polymerization of silica is not. Usually, the ionic reactions are much faster than the condensation reactions. The stoichiometric equation showing the silica formation from TEOS is presented in Scheme 3.3. [Pg.71]

Step 1 represents adsorption of ammonia and step 2 its activation. The irreversible step 3 is obviously not elementary in nature, but unfortunately much information on the level of elementary steps is not available. Step 4 describes water formation and step 5 is the reoxidation of the site. Step 6 describes the blocking of sites by adsorption of water. The model thus relies on partially oxidized sites and vacancies on an oxide, similarly to the hydrodesulfurization reaction described in Chapter 9. The reactions are summarized in the cyclic scheme of Fig. 10.15. [Pg.398]

Evidence exists that the relative solubility of amines and inhibitors in heterogeneous oil-water systems could be decisive in formation of nitrosamines and blocking these reactions, Nitrosopyrrolidine formation in bacon predominates in the adipose tissue despite the fact that its precursor, proline, predominates in the lean tissue (5,6,7). Mottram and Patterson (8) partly attribute this phenomenon to the fact that the adipose tissue furnishes a medium in which nitrosation is favored, Massey, et al, (9) found that the presence of decane in a model heterogeneous system caused a 20-fold increase in rate of nitrosamine formation from lipophilic dihexylamine, but had no effect on nitrosation of hydrophilic pyrrolidine. Ascorbic acid in the presence of decane enhanced the synthesis of nitrosamines from lipophilic amines, but had no effect on nitrosation of pyrrolidine. The oil-soluble inhibitor ascorbyl palmitate had little influence on the formation of nitrosamines in the presence or absence of decane. [Pg.150]

Cap Gas. Both crude and asphaltene-free oil were used to determine the consequences of low-temperature oxidation. It was found that the oxygen content in an artificial gas cap was completely consumed by chemical reactions (i.e., oxidation, condensation, and water formation) before the asphaltene content had reached equilibrium. [Pg.215]

Jacob T. 2006b. Water formation on Pt and Pt-based alloys a theoretical description of a cata-l3dic reaction. ChemPhysChem 7 992-1005. [Pg.157]

The interaction of hydrogen with preadsorbed oxygen at Pt(lll) led to hexagonal and honeycomb structures to develop at 131 K, which could be associated with OH phases with also evidence for water formation. The front (bright ring) consisted mainly of OH(a) and the area behind the front of H20(a). The mechanism suggested is that H(a) reacts first with 0(a) to form OH(a) and then H20(a) the water is mobile and reacts with O(a) to form OH(a) it is therefore an autocatalytic reaction. [Pg.89]

Rowley, A. T. et al., Inorg. Chem. Acta, 1993, 211(1), 77 Preparation of metal oxides by fusing metal halides with lithium oxide in a sealed tube leads to explosions if halide hydrates are employed, particularly lanthanide trihalide hydrates. The preparation succeeds with anhydrous halides. This will be purely a question of vapour pressure above an exothermic reaction the question is whether the vapour is water, or metal halide, and the reaction oxide formation, or hydration of lithium oxide. Like other alkali metal oxides, hydration is extremely energetic. [Pg.1756]

The low-temperature hydrocarbon oxidation mechanism discussed in the previous section is incomplete because the reactions leading to CO were not included. Water formation is primarily by reaction (3.56). The CO forms by the conversion of aldehydes and their acetyl (and formyl) radicals, RCO. The same type of conversion takes place at high temperatures thus, it is appropriate, prior to considering high-temperature hydrocarbon oxidation schemes, to develop an understanding of the aldehyde conversion process. [Pg.110]

In many elimination reactions, water is produced. The formation of water is a strong driving force for many reactions. [Pg.72]


See other pages where Water formation reaction is mentioned: [Pg.756]    [Pg.124]    [Pg.455]    [Pg.24]    [Pg.720]    [Pg.65]    [Pg.64]    [Pg.68]    [Pg.83]    [Pg.124]    [Pg.150]    [Pg.117]    [Pg.1013]    [Pg.30]    [Pg.291]    [Pg.193]    [Pg.756]    [Pg.220]    [Pg.220]    [Pg.33]    [Pg.156]    [Pg.50]    [Pg.106]    [Pg.29]    [Pg.128]    [Pg.49]    [Pg.232]    [Pg.254]    [Pg.966]    [Pg.6]    [Pg.215]    [Pg.216]    [Pg.216]    [Pg.234]    [Pg.47]    [Pg.357]    [Pg.216]    [Pg.126]    [Pg.148]    [Pg.288]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Acid-base reactions water formation

Addition Reactions Followed by Water Loss Acetal Formation

Hydrogen-oxygen reactions water formation

Reaction XVIII.—Ring Formation by Elimination of Water from certain Molecules

Reactions and reaction rate coefficients for the formation of water in star forming regions

Water formation aldol reaction

Water formation in acid-base reactions

© 2024 chempedia.info