Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions below about

In order to understand the thermal oxidation of C2F4, it is first necessary to understand the reactions in the absence of 02. Below about 280°C, C2F4 is thermally stable. Above this temperature, it dimerizes to c-C4Fe, but otherwise undergoes no other reactions below about 550°C. Between 550 and 800°C, the monomer-dimer mixture decomposes to other fluorocarbons via CF2 as an intermediate. At even more elevated temperatures the CF2-C2F4 equilibrium is achieved and ultimately forms carbon and CF4 via CF radicals and fluorine atoms. [Pg.133]

Reactions below about 1300°C, of which the most important are (a) the decomposition of calcite (calcining), (b) the decomposition of clay minerals, and (c) reaction of calcite or lime formed from it with quartz and clay mineral decomposition products to give belite, aluminate and ferrite. Liquid is formed only to a minor extent at this stage, but may have an important effect in promoting the reactions. At the end of this stage, the major phases present are belite, lime, aluminate and ferrite. The last two may not be identical with the corresponding phases in the final product. [Pg.60]

Dissolution restores the [Pt(CN)4] and [PtBr2(CN)4] . With various cations, HF2 , N3, cr etc. may replace the Br . Two C204 may replace forrr CN in cation-deficient salts such as (K2 ,Mg ,3d )[Pt(C204)2] -mH20, with n a little less than 1. 8ee Other reactions below about Pt . [Pg.258]

The rate law may change with temperature. Thus for reaction VII-30 the rate was paralinear (i.e., linear after an initial curvature) below about 470°C and parabolic above this temperature [163], presumably because the CuS2 product was now adherent. Non-... [Pg.283]

Several instniments have been developed for measuring kinetics at temperatures below that of liquid nitrogen [81]. Liquid helium cooled drift tubes and ion traps have been employed, but this apparatus is of limited use since most gases freeze at temperatures below about 80 K. Molecules can be maintained in the gas phase at low temperatures in a free jet expansion. The CRESU apparatus (acronym for the French translation of reaction kinetics at supersonic conditions) uses a Laval nozzle expansion to obtain temperatures of 8-160 K. The merged ion beam and molecular beam apparatus are described above. These teclmiques have provided important infonnation on reactions pertinent to interstellar-cloud chemistry as well as the temperature dependence of reactions in a regime not otherwise accessible. In particular, infonnation on ion-molecule collision rates as a ftmction of temperature has proven valuable m refining theoretical calculations. [Pg.813]

Reference to Figure 3.4 shows that the reduction is not feasible at 800 K. but is feasible at 1300 K. However, we must remember that energetic feasibility does not necessarily mean a reaction will go kinetic stability must also be considered. Several metals are indeed extracted by reduction with carbon, but in some cases the reduction is brought about by carbon monoxide formed when air, or air-oxygen mixtures, are blown into the furnace. Carbon monoxide is the most effective reducing agent below about 980 K, and carbon is most effective above this temperature. [Pg.69]

Reaction of ethyl iodide with triethylamine [(CH3CH2)3N ] yields a crystalline compound CgH2oNI in high yield This compound is soluble in polar solvents such as water but insoluble in nonpolar ones such as diethyl ether It does not melt below about 200°C Suggest a reasonable structure for this product... [Pg.359]

Chlorine may be formed by the Deacon reaction at temperatures below about 900°C,... [Pg.53]

At the high temperatures found in MHD combustors, nitrogen oxides, NO, are formed primarily by gas-phase reactions, rather than from fuel-bound nitrogen. The principal constituent is nitric oxide [10102-43-9] NO, and the amount formed is generally limited by kinetics. Equilibrium values are reached only at very high temperatures. NO decomposes as the gas cools, at a rate which decreases with temperature. If the combustion gas cools too rapidly after the MHD channel the NO has insufficient time to decompose and excessive amounts can be released to the atmosphere. Below about 1800 K there is essentially no thermal decomposition of NO. [Pg.422]

The thermodynamic properties of sulfur trioxide, and of the oxidation reaction of sulfur dioxide are summarized in Tables 3 and 4, respectively. Thermodynamic data from Reference 49 are beheved to be more accurate than those of Reference 48 at temperatures below about 435°C. [Pg.176]

Oxydehydrogenation of /i-Butenes. Normal butenes can be oxidatively dehydrogenated to butadiene in the presence of high concentration of steam with fairly high selectivity (234). The conversion is no longer limited by thermodynamics because of the oxidation of hydrogen to water. Reaction temperature is below about 600°C to minimise over oxidation. Pressure is about 34—103 kPa (5—15 psi). [Pg.347]

The final phase of resole manufacture is known as the condensation stage (Scheme 3). This is the actual process by which molecular weight is developed and involves the combination of the hydroxymethyl phenol intermediates to form oligomers. It can be reasonably well separated from the resole methylolation reaction in practice by maintaining reaction temperatures below about 70°C. The activation energy for condensation is higher than that for methylolation. This is not to say that condensation does not occur at temperatures below 70°C. It simply means that the methylolation is much faster than condensation at this temperature. [Pg.886]

Acetylene Ion. No evidence for the contribution of ion-molecule reactions originating with acetylene ion to product formation has been obtained to date. By analogy with the two preceding sections, we may assume that the third-order complex should dissociate at pressures below about 50 torr. Unfortunately, the nature of the dissociation products would make this process almost unrecognizable. The additional formation of hydrogen and hydrogen atoms would be hidden in the sizable excess of the production of these species in other primary acts while the methyl radical formation would probably be minor compared with that resulting from ethylene ion reactions. The fate of the acetylene ion remains an unanswered question in ethylene radiolysis. [Pg.265]

This same sensitivity can, however, be misleading. Even minor radical routes to a particular reaction product could give rise to intense polarized n.m.r. signals which could obscure the normal monotonic increase of the signal due to product formed by a non-radical route. This problem can be overcome in some cases by estimation of the spectral enhancement factor. Again, it is not possible to justify a firm, threshold value, but as a useful rule of thumb when enhancements fall below about 100 then the possibility of an important alternative non-radical route to the same product should be carefully investigated. [Pg.80]

A definition of clean air based upon NOj concentrations is more difficult to obtain, because of the ubiquitous natural source in lightning (56,154), and because NO may influence HO concentration even at the lowest tropospheric NO levels (a few ppt) that have been observed. An operational definition might require that the rate of the H02 self-reaction R33 be much faster than its reaction with NO, R13. At NO concentrations below about 1 ppb, [H02 ] is relatively independent of [NO ], while [HO ] may increase with [NO ]. Above this level, both [HO2 ] and [HO ] fall with increasing [NOJ. These [HOJ dependencies on [NO ] are shown in Figure 4 (58) and discussed further in the last section. [Pg.88]

Inspection of Fig. 15.3 reveals that while for jo 0.1 nAcm , the effectiveness factor is expected to be close to 1, for a faster reaction with Jo 1 p,A cm , it will drop to about 0.2. This is the case of internal diffusion limitation, well known in heterogeneous catalysis, when the reagent concentration at the outer surface of the catalyst grains is equal to its volume concentration, but drops sharply inside the pores of the catalyst. In this context, it should be pointed out that when the pore size is decreased below about 50 nm, the predominant mechanism of mass transport is Knudsen diffusion [Malek and Coppens, 2003], with the diffusion coefficient being less than the Pick diffusion coefficient and dependent on the porosity and pore stmcture. Moreover, the discrete distribution of the catalytic particles in the CL may also affect the measured current owing to overlap of diffusion zones around closely positioned particles [Antoine et ah, 1998]. [Pg.523]

Hayden et al., 2009]. Figure 16.8 (Plate 16.1) shows the effect of the equivalent thickness of deposited Pt on titania on the activity of the ORR carried out in a 0.5 M HCIO4 electrolyte at 20 °C. In this case, the activity was assessed by determining the potential (vs. RHE) at which the specific current density reaches 0.01 mA cm A lower potential indicates a higher overpotential required to achieve this rate of reaction, and hence corresponds to a reduction in activity. The shaded region of the plot, below about 1 nm equivalent thickness, corresponds to coverages over which distinct particles are... [Pg.579]

CO electro-oxidation exhibits a strong particle size dependence on both carbon-and titania-supported Au catalysts a strong deactivation of the reaction is observed for particle sizes below about 3 nm. In the case of the titania supports, however, a distinct activation of the reaction is also evident. This manifests itself in a strong decrease in the overpotential for the reaction, and an increase in activity as the particle size decreases in the range 8-3 nm. The result is a maximum in the catalytic activity with particle size. [Pg.583]

The results can be understood in terms of the influence of an intrinsic particle size effect (independent of the support) and a support-induced particle size effect. For both reactions and both supported metals, the intrinsic effect manifests itself in a decrease in activity with decreasing particle size below about 3 nm. [Pg.583]

One property of the F + HD reaction which is particularly unique is the nearly complete absence of direct reaction pathway at energies below about Ec = 1 kcal/mol.26,27,31 At these low energies the reaction, and all of its observable characteristics, is mediated through a reactive resonance. The total DCS presented so far is a highly averaged quantity, the actual data obtained from the Doppler-selected TOF measurement is however the state-to-state DCS. To illustrate the effect of reactive resonance at the state-to-state level of details, let us focus on the low energy reaction. Figure 20... [Pg.35]


See other pages where Reactions below about is mentioned: [Pg.71]    [Pg.178]    [Pg.492]    [Pg.71]    [Pg.178]    [Pg.492]    [Pg.1836]    [Pg.391]    [Pg.156]    [Pg.110]    [Pg.334]    [Pg.360]    [Pg.84]    [Pg.962]    [Pg.965]    [Pg.381]    [Pg.554]    [Pg.80]    [Pg.82]    [Pg.237]    [Pg.442]    [Pg.154]    [Pg.331]    [Pg.508]    [Pg.513]    [Pg.534]    [Pg.534]    [Pg.545]    [Pg.571]    [Pg.4]    [Pg.63]    [Pg.351]   


SEARCH



© 2024 chempedia.info