Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction thermal effects

Our initial work on reaction thermal effects involved CFD simulations of fluid flow and heat transfer with temperature-dependent heat sinks inside spherical particles. These mimicked the heat effects caused by the endothermic steam reforming reaction. The steep activity profiles in the catalyst particles were approximated by a step change from full to zero activity at a point 5% of the sphere radius into the pellet. [Pg.378]

The magnitude of the reaction thermal effect, referred to in the first scheme, was obtained by quantum-chemical computations. [Pg.290]

Numerical calculations using a computer showed the difference between the solutions obtained in steady- and nonsteady-state approximations as depending mainly on the magnitude of Q/(cp) (where Q is the reaction thermal effect, c is thermal capacity and p is the reaction medium density), activation energy, and pre-exponential factors of initiation ( ) and termination ( t) rate constants. [Pg.134]

The temperature difference along the device axis caused by reaction thermal effect... [Pg.292]

A temperature dependence of reaction thermal effect (2 =/(f)) can be obtained from KirchhoflTs equations by integration of Eq. 2.12 or 2.15. It should however be borne in mind that such integration is possible only when the temperature dependencies of the specific heat of substrates and products are a continuous function, otherwise the result would be incorrect. [Pg.21]

Reactions in porous catalyst pellets are Invariably accompanied by thermal effects associated with the heat of reaction. Particularly In the case of exothermic reactions these may have a marked influence on the solutions, and hence on the effectiveness factor, leading to effectiveness factors greater than unity and, In certain circumstances, multiple steady state solutions with given boundary conditions [78]. These phenomena have attracted a great deal of interest and attention in recent years, and an excellent account of our present state of knowledge has been given by Arls [45]. [Pg.156]

From the colorless state it can be switched with light of short wavelength (A = 380 nm) via an electrocycHc ring opening and cis/trans rotation of one half of the molecule into a state with violet/purple color. The reverse reaction is effected by visible light (A = 580 nm). Since the system is metastable, one of the two reaction directions is matched by a rival thermal reaction, the thermoreversion. This progresses, however, in the case of benzospiropyran, at room temperature by a factor of 10 slower than the light-induced reaction. [Pg.151]

The simplest method of reduciag stresses and reactions is to provide additional pipe ia the system ia the form of loops or offset-bonds. When physical limitations restrict the use of additional bends, a multiple arrangement of several small-size pipe mns may sometimes be used. Owiag to stress intensification, the maximum stress generally occurs at elbows, bends, and Ts. Thus, heavier-walled fittings may reduce the stress without significantly impairing flexibiUty. FiaaHy, effectively located restraints can reduce thermal effects on the equipment. [Pg.64]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

Catalytic Incinerators Catalytic incinerators are an alternative to thermal incinerators. For simple reactions, the effect of the presence of a catalyst is to (1) increase the rate of the reaction, (2) permit the reaction to occur at a lower temperature, and (3) reduce the reactor volume. [Pg.2190]

Consider the thermal effects of reaction mixture transfer to prescrubber... [Pg.75]

Thermochemistry is concerned with the study of thermal effects associated with phase changes, formation of chemical compouncls or solutions, and chemical reactions in general. The amount of heat (Q) liberated (or absorbed) is usually measured either in a batch-type bomb calorimeter at fixed volume or in a steady-flow calorimeter at constant pressure. Under these operating conditions, Q= Q, = AU (net change in the internal energy of the system) for the bomb calorimeter, while Q Qp = AH (net change in the enthalpy of the system) for the flow calorimeter. For a pure substance. [Pg.351]

Adiabatic Reaction Temperature (T ). The concept of adiabatic or theoretical reaction temperature (T j) plays an important role in the design of chemical reactors, gas furnaces, and other process equipment to handle highly exothermic reactions such as combustion. T is defined as the final temperature attained by the reaction mixture at the completion of a chemical reaction carried out under adiabatic conditions in a closed system at constant pressure. Theoretically, this is the maximum temperature achieved by the products when stoichiometric quantities of reactants are completely converted into products in an adiabatic reactor. In general, T is a function of the initial temperature (T) of the reactants and their relative amounts as well as the presence of any nonreactive (inert) materials. T is also dependent on the extent of completion of the reaction. In actual experiments, it is very unlikely that the theoretical maximum values of T can be realized, but the calculated results do provide an idealized basis for comparison of the thermal effects resulting from exothermic reactions. Lower feed temperatures (T), presence of inerts and excess reactants, and incomplete conversion tend to reduce the value of T. The term theoretical or adiabatic flame temperature (T,, ) is preferred over T in dealing exclusively with the combustion of fuels. [Pg.359]

Using calorimetry to estimate the degree of filler-polymer interaction as described in [99] the authors of [318, 319] determined that the filler reaction with PVC is exothermic, which is indicative of a stronger bond in the polymer-filler system. No thermal effect was noted for mechanical mixtures, except for a few cases where it was endothermal. [Pg.46]

There is sfill some dispufe about how microwave irradiation accelerates reactions. Besides the generally accepted thermal effects, one beheves that there are some specific (but also thermal) microwave effects, such as the formation of hot spots . There is still some controversy about the existence of non-thermal (athermal) microwave effects. At the present time, new techniques such as coohng while heating are being investigated and the problem of upscahng... [Pg.11]

In all cases, besides resulting in good to excellent yields, the microwave-assisted multistep syntheses resulted in much faster reactions compared to earlier published procedures at atmospheric pressure under conventional heating conditions. It is also noteworthy that in some cases the strong thermal effect due to graphite/microwave interaction, can efficiently be used for the synthesis of heterocyclic skeletons, especially benzothiazoles but, in fact, there is no general rule and some reactions performed in the presence of solvent may sometimes be more convenient than the same dry-media conditions. [Pg.71]

Independently, Caddick et al. reported microwave-assisted amination of aryl chlorides using a palladium-N-heterocyclic carbene complex as the catalyst (Scheme 99) [lOlj. Initial experiments in a domestic microwave oven (reflux conditions) revealed that the solvent is crucial for the reaction. The Pd source also proved very important, since Pd(OAc)2 at high power in DMF gave extensive catalyst decomposition and using it at medium and low power gave no reaction at all. Pd(dba)2/imidazohum salt (1 mol% catalyst loading) in DME with the addition of some DMF was found to be suitable. Oil bath experiments indicated that only thermal effects are governing the amination reactions. [Pg.203]


See other pages where Reaction thermal effects is mentioned: [Pg.307]    [Pg.307]    [Pg.372]    [Pg.378]    [Pg.284]    [Pg.531]    [Pg.362]    [Pg.234]    [Pg.605]    [Pg.371]    [Pg.117]    [Pg.246]    [Pg.294]    [Pg.399]    [Pg.291]    [Pg.307]    [Pg.307]    [Pg.372]    [Pg.378]    [Pg.284]    [Pg.531]    [Pg.362]    [Pg.234]    [Pg.605]    [Pg.371]    [Pg.117]    [Pg.246]    [Pg.294]    [Pg.399]    [Pg.291]    [Pg.181]    [Pg.358]    [Pg.480]    [Pg.443]    [Pg.377]    [Pg.295]    [Pg.509]    [Pg.484]    [Pg.41]    [Pg.484]    [Pg.16]    [Pg.806]    [Pg.827]    [Pg.88]    [Pg.137]    [Pg.203]    [Pg.135]   
See also in sourсe #XX -- [ Pg.372 , Pg.378 ]




SEARCH



Dangerous reactions thermal effects

Thermal effect of chemical reaction

Thermal effects

Thermal reaction magnetic field effect

Thermal reactions

© 2024 chempedia.info