Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction lowest-energy

A simple VB approach was used in [75] to describe the five structures. Only the lowest energy spin-pairing structures I (B symmehy) of the type (12,34,5 were used (Fig. 21). We consider them as reactant-product pairs and note that the transformation of one structure (e.g., la) to another (e.g., Ib) is a thr ee-electron phase-inverting reaction, with a type-II transition state. As shown in Figure 22, a type-II structure is constructed by an out-of-phase combination of... [Pg.358]

Chemical processes, such as bond stretching or reactions, can be divided into adiabatic and diabatic processes. Adiabatic processes are those in which the system does not change state throughout the process. Diabatic, or nonadiabatic, processes are those in which a change in the electronic state is part of the process. Diabatic processes usually follow the lowest energy path, changing state as necessary. [Pg.7]

Transition structures can be dehned by nuclear symmetry. For example, a symmetric Spj2 reaction will have a transition structure that has a higher symmetry than that of the reactants or products. Furthermore, the transition structure is the lowest-energy structure that obeys the constraints of higher symmetry. Thus, the transition structure can be calculated by forcing the molecule to have a particular symmetry and using a geometry optimization technique. [Pg.127]

MEP (IRC, intrinsic reaction coordinate, minimum-energy path) the lowest-energy route from reactants to products in a chemical process MIM (molecules-in-molecules) a semiempirical method used for representing potential energy surfaces... [Pg.365]

Under moderate conditions, primary alkoxy radicals tend to undergo reaction 12 whereas secondary and tertiary alkoxys tend to undergo -scission. In general, the alkyl group that can form the lowest energy radical tends to become the departing radical. The -scission of secondary alkoxy radicals yields aldehydes as the nonradical products tertiary alkoxy radicals yield ketones. [Pg.335]

The cis-trans isomerization of stilbenes is technically another photochromic reaction (18). Although the absorption bands of the stilbene isomers, occur at nearly identical wavelengths, the extinction coefficient of the lowest energy band of cis-stilbene [645-49-8] is generally less than that of stilbene [103-30-0],... [Pg.162]

From that highest energy point, called the peak, search conjugate to the direction of the reaction pathway and find the lowest energy point. [Pg.217]

Is the second step of the overall reaction for R=Me (N-methylphthalimide + hydrazine —> phthalimide hydrazide + methylamine) exothermic or endothermic Will higher temperatures accelerate or inhibit the reaction Is the structure drawn above for phthalimide hydrazide its lowest-energy form or are either the imine or diimine tautomers preferred Compare energies for the hydrazide and imine and diimine tautomers. Examine the geometry of phthalimide hydrazide and any low energy tautomer, and draw the Lewis structure(s) that best describes it. Can your Lewis structures account for the energy differences Examine electrostatic potential maps for all three molecules. Which molecule(s) are stablized by favorable electrostatic interactions Which are destabilized Can this help explain the energy differences Elaborate. [Pg.206]

A minimum on a potential energy surface represents an equilibrium stracture. There will invariably be a number of such local minima, and we can imagine a number of paths on the surface that connect one particular minimum to another. If the highest-energy point on each path is considered, the transition structure can be defined as the lowest of these maxima. The reaction path is the lowest-energy route between two minima. [Pg.234]

To account for the course of this reaction theoretical calculations of the coordination of ketomalonate 37 to copper(II) and zinc(II) have revealed that the six-membered ring system is slightly more stable than the five-membered ring system (Scheme 4.30). The coordination of 37 to catalyst (l )-39 shows that the six-membered intermediate is C2-symmetric with no obvious face-shielding of the carbonyl functionality (top), while for the five-membered intermediate (bottom) the carbonyl is shielded by the phenyl substituent. Calculations of the transition-state energy for the reaction of the two intermediates with 1,3-cyclohexadiene leads to the lowest energy for the five-membered intermediate this approach is in agreement with the experimental results [45]. [Pg.177]

The mechanism of the carbo-Diels-Alder reaction has been a subject of controversy with respect to synchronicity or asynchronicity. With acrolein as the dieno-phile complexed to a Lewis acid, one would not expect a synchronous reaction. The C1-C6 and C4—C5 bond lengths in the NC-transition-state structure for the BF3-catalyzed reaction of acrolein with butadiene are calculated to be 2.96 A and 1.932 A, respectively [6]. The asynchronicity of the BF3-catalyzed carbo-Diels-Alder reaction is also apparent from the pyramidalization of the reacting centers C4 and C5 of NC (the short C-C bond) is pyramidalized by 11°, while Cl and C6 (the long C-C bond) are nearly planar. The lowest energy transition-state structure (NC) has the most pronounced asynchronicity, while the highest energy transition-state structure (XT) is more synchronous. [Pg.306]

The hetero-Diels-Alder reaction of formaldehyde with 1,3-butadiene has been investigated with the formaldehyde oxygen atom coordinated to BH3 as a model for a Lewis acid [25 bj. Two transition states were located, one with BH3 exo, and one endo, relative to the diene. The former has the lowest energy and the calculated transition-state structure is much less symmetrical than for the uncatalyzed reaction shown in Fig. 8.12. The C-C bond length is calculated to be 0.42 A longer, while the C-0 bond length is 0.23 A shorter, compared to the uncatalyzed reac-... [Pg.315]

Since the double-bond configuration is established in the final elimination step from a /t-silicon-(or tin-) substituted carbenium ion in a conformation of lowest energy, often high E selectivity is observed. In reactions of allylstannanes, catalyzed by tin(TV) chloride or titanium(IV) chloride, occasionally a metal exchange occurs, followed by the pericyclic addition pathway leading to the iwti-diastereomers17 19. A more detailed discussion is given in Section D.1.3.3.3.5. [Pg.214]

The results for the reaction of (S)-2-phenylpropanal and (Z)-2-butenylboronate may be reconciled with this transition state model if it is assumed that the phenyl substituent is smaller than methyl in the pair of transition states 6 and 7. analogous to 4 and 5. This is possible if the lowest energy transition state is one in which the phenyl group eclipses C(cc)-H, such that a flat, sterically undemanding surface is presented to the incoming (Z)-2-butenylboronate. Similar... [Pg.282]


See other pages where Reaction lowest-energy is mentioned: [Pg.415]    [Pg.415]    [Pg.67]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.67]    [Pg.415]    [Pg.811]    [Pg.912]    [Pg.302]    [Pg.307]    [Pg.474]    [Pg.191]    [Pg.173]    [Pg.179]    [Pg.365]    [Pg.365]    [Pg.307]    [Pg.388]    [Pg.123]    [Pg.33]    [Pg.202]    [Pg.221]    [Pg.173]    [Pg.20]    [Pg.65]    [Pg.4]    [Pg.49]    [Pg.337]    [Pg.356]    [Pg.357]    [Pg.364]    [Pg.368]    [Pg.390]    [Pg.198]    [Pg.311]    [Pg.319]    [Pg.319]    [Pg.863]    [Pg.286]   


SEARCH



Lowest energy

© 2024 chempedia.info