Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction, identity rotation

The chemistry of propylene is characterized both by the double bond and by the aHyUc hydrogen atoms. Propylene is the smallest stable unsaturated hydrocarbon molecule that exhibits low order symmetry, ie, only reflection along the main plane. This loss of symmetry, which implies the possibiUty of different types of chemical reactions, is also responsible for the existence of the propylene dipole moment of 0.35 D. Carbon atoms 1 and 2 have trigonal planar geometry identical to that of ethylene. Generally, these carbons are not free to rotate, because of the double bond. Carbon atom 3 is tetrahedral, like methane, and is free to rotate. The hydrogen atoms attached to this carbon are aUyflc. [Pg.124]

Figure 16-27 compares the various constant pattern solutions for R = 0.5. The curves are of a similar shape. The solution for reaction kinetics is perfectly symmetrical. The cui ves for the axial dispersion fluid-phase concentration profile and the linear driving force approximation are identical except that the latter occurs one transfer unit further down the bed. The cui ve for external mass transfer is exactly that for the linear driving force approximation turned upside down [i.e., rotated 180° about cf= nf = 0.5, N — Ti) = 0]. The hnear driving force approximation provides a good approximation for both pore diffusion and surface diffusion. [Pg.1527]

The 50% reaction turbine has been used widely and has special significance. The velocity diagram for a 50% reaction is symmetrical and, for the maximum utilization factor, the exit velocity (V4) must be axial. Figure 9-11 shows a velocity diagram of a 50% reaction turbine and the effect on the utilization factor. From the diagram IV = V4, the angles of both the stationary and rotating blades are identical. Therefore, for maximum utilization. [Pg.349]

Ideally, it would be desirable to determine many parameters in order to characterize and mechanistically define these unusual reactions. This has been an important objective that has often been considered in the course of these studies. It would be helpful to know, as a function of such parameters of the plasma as the radio-frequency power, pressure, and rate of admission of reactants, (2) the identity and concentrations of all species, including trifluoromethyl radicals, (2) the electronic states of each species, (3) the vibrational states of each species, and (4) both the rotational states of each species and the average, translational energies of, at least, the trifluoromethyl radicals. [Pg.190]

In such systems the researcher can electrochemically clean and precondition the metal electrode before each run to provide an identical surface for the anodic and the cathodic half-reactions as well as for the catalytic reaction between them. Use of a rotating disk electrode/ckatalyst also allows surface- and diffusion-controlled processes to be easily distin-guished. ... [Pg.7]

The basic theory of mass transfer to a RHSE is similar to that of a RDE. In laminar flow, the limiting current densities on both electrodes are proportional to the square-root of rotational speed they differ only in the numerical values of a proportional constant in the mass transfer equations. Thus, the methods of application of a RHSE for electrochemical studies are identical to those of the RDE. The basic procedure involves a potential sweep measurement to determine a series of current density vs. electrode potential curves at various rotational speeds. The portion of the curves in the limiting current regime where the current is independent of the potential, may be used to determine the diffusivity or concentration of a diffusing ion in the electrolyte. The current-potential curves below the limiting current potentials are used for evaluating kinetic information of the electrode reaction. [Pg.192]

Two identical stationary micro-electrodes (usually platinum) across which a potential of 0.01-0.1 V is applied can be used in place of either the DME or the rotating platinum micro-electrode. The equivalence point is marked by a sudden rise in current from zero, a decrease to zero, or a minimum at or near zero (Figures 6.16(a), (b) and (c)). The shape of the curve depends on the reversibility of the redox reactions involved. The two platinum electrodes assume the roles of anode and cathode, and in all cases a current flows in the cell only if there is a significant concentration of both the oxidized and reduced forms of one of the reactants. In general, two types of system can be envisaged ... [Pg.258]

Most of the time, enantiomers are found equally mixed together. Equally mixed enantiomers are not optically active because the rotation in one direction by one structure is canceled by the rotation in the opposite direction by the other structure. Hence, a sample of 2-butanol, for example, as normally obtained from a chemical vendor, is not optically active. An equimolar mixture of two enantiomers is called a racemic mixture and is optically inactive. Separation of a racemic mixture is not possible by conventional methods because the enantiomers are identical with respect to properties that are used to effect the separation. However, it may be possible to separate them by chemical methods, meaning that one may undergo a chemical reaction that the other does not. Some biological reactions are such reactions, and hence a single enantiomeric structure is sometimes found in nature. [Pg.432]

Table 11 The translational, rotational and vibrational contributions to the secondary a-deuterium KIEs for the three halide ion-methyl halide identity SN2 reactions calculated from the separated reactants and from the ion-dipole complexes."... Table 11 The translational, rotational and vibrational contributions to the secondary a-deuterium KIEs for the three halide ion-methyl halide identity SN2 reactions calculated from the separated reactants and from the ion-dipole complexes."...
An interesting method for the estimation of optical purity of sulfoxides, which consists of the combination of chemical methods with NMR spectroscopy, was elaborated by Mislow and Raban (241). The optical purity is usually determined by the conversion of a mixture of enantiomers into a mixture of diastereomers, the ratio of which may be easily determined by NMR spectroscopy. In contrast to this, Mislow and Raban used as starting material for the synthesis of enantiomeric sulfoxides a diastereomeric mixture of pinacolyl p-toluenesulfinates 210. The ratio of the starting sulfinates 210 was 60.5 39.5, as evidenced by the H NMR spectrum. Since the Grignard reaction occurs with full stereospecificity, the ratio of enantiomers of the sulfoxide formed is expected to be almost identical to that of 210. This corresponds to a calculated optical purity of the sulfoxide of 20%. In this way the specific rotations of other alkyl or aryl p-tolyl sulfoxides can conveniently be determined. [Pg.404]

Oudeman law physchem The law that the molecular rotations of the various salts of an acid or base tend toward an identical limiting value as the concentration of the solution is reduced to zero. od-a-man, I6 ) outer orbital complex phys chem A metal coordination compound in which the d orbital used in forming the coordinate bond is at the same energy level as the s and p orbitals. aud-or 6rb-od-3l kam.pleks) overall stability constant analychem Reaction equilibrium constant for the reaction... [Pg.272]


See other pages where Reaction, identity rotation is mentioned: [Pg.359]    [Pg.359]    [Pg.49]    [Pg.126]    [Pg.13]    [Pg.271]    [Pg.2966]    [Pg.568]    [Pg.578]    [Pg.1081]    [Pg.195]    [Pg.237]    [Pg.193]    [Pg.146]    [Pg.25]    [Pg.32]    [Pg.1081]    [Pg.649]    [Pg.102]    [Pg.9]    [Pg.472]    [Pg.676]    [Pg.686]    [Pg.108]    [Pg.60]    [Pg.19]    [Pg.51]    [Pg.162]    [Pg.1015]    [Pg.338]    [Pg.9]    [Pg.37]    [Pg.221]    [Pg.171]    [Pg.33]    [Pg.210]    [Pg.75]    [Pg.402]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Identity reaction

© 2024 chempedia.info