Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rare-earth-exchanged

Zeolites with lower UCS are initially less active than the conventional rare earth exchanged zeolites (Figure 3-5). However, the lower UCS zeolites tend to retain a greater fraction of their activity under severe thermal and hydrothermal treatments, hence the name ultrastable Y. [Pg.89]

A fully rare-earth-exchanged zeolite equilibrates at a high UCS. whereas a non-rare-earth zeolite equilibrates at a very low UCS in the range of 24.25 [3]. All intermediate levels of rare-earth-exchanged zeolite can be produced. The rare earth increases zeolite activity and... [Pg.90]

Figure 3-5. Comparison of activity retention between rare-earth-exchanged zeolites versus USY zeolites. (Source Grace Davison Octane Handbook.)... Figure 3-5. Comparison of activity retention between rare-earth-exchanged zeolites versus USY zeolites. (Source Grace Davison Octane Handbook.)...
At this state of the catalyst synthesis there are two approaches for further treamient of NaY. Depending on the particular catalyst and the catalyst supplier, further treatment (rare earth exchanged) of NaY can be accomplished either before or after its incorporation into the matrix. Post-treatment of the NaY zeolite is simpler, but may reduce ion exchange efficiency. [Pg.96]

A rare-earth-exchanged zeolite increases hydrogen transfer reactions. In simple terms, rare earth forms bridges between two to three acid sites in the catalyst framework. In doing so, the rare earth protects... [Pg.134]

As mentioned above, Y zeolites did not realize their full potential in catalysis until the methods of rare-earth exchange and steam stabilization were introduced. [Pg.539]

In the early 70 s, FCC formulations containing 10-40% CREY (calcined rare-earth exchanged Y zeolites) were widely employed because these catalysts offered improved chemical as well as thermal and hydrothermal stability over FCC compositions containing equivalent amounts of (low sodium) HY crystals (23-25). The... [Pg.7]

Table III compares the gasoline composition from three steam deactivated catalyst systems. The first contains 10% rare earth exchanged faujasite (RE FAU) in an inert silica/clay matrix at a cell size of 2.446 nm the second contains 20% of an ultra stable faujasite (Z-14 USY) at a unit cell size of 2.426 nm in inert matrix. The third contains 50% amorphous high surface area silica-alumina (70% AI2O3 30% Si02) and 50% clay the nitrogen BET surface area of this catalyst after steam deactivation is 140 m /g. All three catalysts were deactivated for 4 hrs. at 100% steam and at 816°C. Table III compares the gasoline composition from three steam deactivated catalyst systems. The first contains 10% rare earth exchanged faujasite (RE FAU) in an inert silica/clay matrix at a cell size of 2.446 nm the second contains 20% of an ultra stable faujasite (Z-14 USY) at a unit cell size of 2.426 nm in inert matrix. The third contains 50% amorphous high surface area silica-alumina (70% AI2O3 30% Si02) and 50% clay the nitrogen BET surface area of this catalyst after steam deactivation is 140 m /g. All three catalysts were deactivated for 4 hrs. at 100% steam and at 816°C.
The increase in octane observed using dealuminated faujasite compared to high cell size rare earth exchanged faujasite has been correlated with the Si/AI ratio of the sieve and with the sodium content (3). While the relationship between Si/Al ratio as measured by unit cell is confirmed by pilot unit studies in our laboratory. Figure 1, the relationship with sodium content is more complicated. Figure 2. Sodium added to the catalyst after hydrothermal dealumination reduces activity but does not affect octane, while sodium present before hydrothermal dealumination increases activity but does reduce octane. This result implies that selectivity for octane is related to structures formed during... [Pg.104]

The curve shown for 60% AI2O3 actually represents two catalysts one with and one without rare earth exchange. At first, the similarity of these two catalysts underestimated the importance of rare earth content. [Pg.119]


See other pages where Rare-earth-exchanged is mentioned: [Pg.449]    [Pg.457]    [Pg.210]    [Pg.88]    [Pg.96]    [Pg.303]    [Pg.84]    [Pg.346]    [Pg.255]    [Pg.285]    [Pg.285]    [Pg.295]    [Pg.183]    [Pg.47]    [Pg.104]    [Pg.85]    [Pg.488]    [Pg.510]    [Pg.537]    [Pg.539]    [Pg.542]    [Pg.558]    [Pg.2]    [Pg.35]    [Pg.64]    [Pg.88]    [Pg.163]    [Pg.167]   
See also in sourсe #XX -- [ Pg.32 , Pg.74 ]




SEARCH



Rare-earth exchange

© 2024 chempedia.info