Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman third-order

All nonlinear (electric field) spectroscopies are to be found in all temis of equation (B 1.3.1) except for the first. The latter exclusively accounts for the standard linear spectroscopies—one-photon absorption and emission (Class I) and linear dispersion (Class II). For example, the temi at third order contains by far the majority of the modem Raman spectroscopies (table B 1.3.1 and tableBl.3.2). [Pg.1181]

B1.3.2.3 THE FIELD GENERATORS FOR ALL THIRD ORDER RAMAN SPECTROSCOPIES... [Pg.1185]

B1.3.2.4 TIME EVOLUTION OF THE THIRD ORDER POLARIZATION BY WAVE MIXING ENERGY LEVEL (WMEL) DIAGRAMS. THE RAMAN SPECTROSCOPIES CLASSIFIED... [Pg.1186]

The general task is to trace the evolution of the third order polarization of the material created by each of the above 12 Raman field operators. For brevity, we choose to select only the subset of eight that is based on two colours only—a situation that is connnon to almost all of the Raman spectroscopies. Tliree-coloiir Raman studies are rather rare, but are most interesting, as demonstrated at both third and fifth order by the work in Wright s laboratory [21, 22, 23 and 24]- That work anticipates variations that include infrared resonances and the birth of doubly resonant vibrational spectroscopy (DOVE) and its two-dimensional Fourier transfomi representations analogous to 2D NMR [25]. [Pg.1186]

Flere, the linear polarizability, a (oip 2), corresponds to the doorway stage of the 4WM process while to the window stage. We also see the (complex) Raman resonant energy denominator exposed. Of the tliree energy denominator factors required at third order, the remaining two appear, one each, m the two Imear polarizability tensor elements. [Pg.1191]

Plenary 7(5. N I Koroteev et al, e-mail address Koroteev nik.phys.iusu.su (CARS/CSRS, CAHRS, BioCARS). A survey of the many applications of what we call the Class II spectroscopies from third order and beyond. 2D and 3D Raman imaging. Coherence as stored infonuation, quantum infonuation (the qubit ). Uses tenus CARS/CSRS regardless of order. BioCARS is fourtli order in optically active solutions. [Pg.1218]

Figure 6.1 Nonlinear optical responses, (a) Second-order SF generation, the transition probability is enhanced when the IR light is resonant to the transition from the ground state g to a vibrational excited state V. CO is the angular frequency of the vibration, (b) Third-order coherent Raman scheme, the vibrational coherence is generated via impulsive stimulated... Figure 6.1 Nonlinear optical responses, (a) Second-order SF generation, the transition probability is enhanced when the IR light is resonant to the transition from the ground state g to a vibrational excited state V. CO is the angular frequency of the vibration, (b) Third-order coherent Raman scheme, the vibrational coherence is generated via impulsive stimulated...
Low frequency spectra of liquids are notably deficient of any structure, and it has long been hoped that a technique would be discovered that provides the same type of line narrowing enjoyed in echo-based electronic and NMR spectroscopy. Tanimura and Mukamel observed that such a technique was possible, and proposed a two-time interval, fifth-order Raman pulse sequence capable of distinguishing, for example, inhomogeneous and homogeneous contributions to the lineshape.[4] The pulse sequence, shown in Fig. 1, is simply an extension of conventional time-domain third-order Raman-based methods. At the... [Pg.265]

The implementation of time-resolved CARS for microspectroscopy and its application for vibrational imaging based on RFID was first demonstrated by Volkmer et al. [64] using three incident pulses that are much shorter than the relevant material time scale. Here, a pair of temporally overlapped pump and Stokes femtosecond pulses was used to impulsively polarize the molecular vibrations in the sample. Impulsive excitation with a single ultrashort pulse is also possible provided that the spectral bandwidth of the pulse exceeds the Raman shift of the molecular vibration of interest [152]. The relaxation of the induced third-order nonlinear polarization is then probed by scattering of another pulse at a certain delay time, r. A measurement of the RFID consists of the CARS signal collected at a series of delay times. [Pg.135]

Bulk moduli and pressure derivatives. Results for the bulk modulus and its pressure derivative for all three HMX polymorphs obtained from fitting simulation-predicted isotherms to the equations of state discussed above are summarized in Table 7. For all data sets, we include fits to the Us-Up form (Eq. 18) and both weighting schemes for the third-order Birch-Mumaghan equation of state (Eqs. 20 and 21). In the case of the experimental data for /THMX, values for the moduli based on Eqs. 18 and 20 were taken from the re-analysis of Menikoff and Sewell. Two sets of results are included in the case of Yoo and Cynn, since they reported on the basis of shifts in the Raman spectra a phase transition with zero volume change at 12 GPa. Simulation data of the /T HMX isotherm due to Sorescu et al. were extracted by hand from Fig. 3b of their work. [Pg.310]


See other pages where Raman third-order is mentioned: [Pg.1182]    [Pg.1184]    [Pg.1185]    [Pg.1185]    [Pg.1185]    [Pg.1187]    [Pg.1190]    [Pg.1191]    [Pg.1200]    [Pg.1201]    [Pg.1205]    [Pg.1219]    [Pg.1222]    [Pg.1273]    [Pg.118]    [Pg.28]    [Pg.105]    [Pg.105]    [Pg.210]    [Pg.47]    [Pg.201]    [Pg.209]    [Pg.103]    [Pg.119]    [Pg.183]    [Pg.265]    [Pg.312]    [Pg.266]    [Pg.266]    [Pg.266]    [Pg.267]    [Pg.321]    [Pg.672]    [Pg.113]    [Pg.115]    [Pg.133]    [Pg.145]    [Pg.194]    [Pg.20]    [Pg.26]   
See also in sourсe #XX -- [ Pg.105 ]

See also in sourсe #XX -- [ Pg.555 ]




SEARCH



Third-order

© 2024 chempedia.info